skip to main content


Program Studi Ilmu Gizi, Departemen Gizi Masyarakat, Fakultas Ekologi Manusia, Institut Pertanian Bogor, Indonesia

Received: 17 Jul 2023; Published: 29 Apr 2024.

Citation Format:


Background: Indonesia still faces several challenges concerning the control of neglected tropical diseases (NTDs). Leprosy is one of the bacterial infectious NTDs caused by Mycobacterium leprae. The most obvious risk factors include undernutrition, poverty, food scarcity, food insecurity and a lack of food diversity. According to immunity beneficiaries and preventable or protecting factors, nutrition and food are essential.

Objectives: To synthesize the diet and nutrition risk factors and consequences with the most substantial evidence related to leprosy disease.

Methods: Five databases were searched systematically, following punctuation and conventions-based keyword searches and criteria and free-text terms. Selected articles included systematic reviews and other studies involving human subjects published between 2013 and 2023. Finding articles (n=588) were interpreted using preferred reporting of items for systematic reviews and meta-analyses (PRISMA). Eligible articles (n=16) were described by author’s name, publication year, study objectives, locations, study design, participants, methods, intervention and exposure, and critical findings and impacts/outputs.

Results: In 16 studies, there were nutrition explanations correlated to leprosy disease. Malnutrition, either undernutrition or overnutrition, may lead to a worse disease prognosis. A comprehensive approach to food security, diet quality, and dietary behaviors is needed to protect against the disease. Affected individuals tend to have lower essential nutrition serum levels to obtain multiple micronutrient supplements such as vitamins A, C, D, E, zinc and selenium.

Conclusion: Regarding immunity beneficiaries and impacted factors, there are several potential risk factors related to nutrition and diet in leprosy that are necessary considerations, including nutritional status, food and nutritional security (food environment-related) and dietary behavior.

Keywords: Food insecurity; Immune responses; Leprosy; Neglected tropical disease; Nutrition vulnerability.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
Figure 1
Type Research Instrument
  Download (43KB)    Indexing metadata
 Research Instrument
Table 1
Type Research Instrument
  Download (26KB)    Indexing metadata
Surat Pernyataan Keaslian dan Persetujuan Penulis
Type Other
  Download (105KB)    Indexing metadata
Keywords: Food insecurity; Immune responses; Leprosy; Neglected tropical disease; Nutrition vulnerability

Article Metrics:

  1. Fauziyah S, Putri S, Salma Z, et al. How should Indonesia consider its neglected tropical diseases in the COVID-19 era? Hopes and challenges (Review). Biomed Rep. 2021;14(6):53. doi: 10.3892/br.2021.1429
  2. Masaki T, McGlinchey A, Cholewa-Waclaw J, Qu J, Tomlinson SR, Rambukkana A. Innate immune response precedes mycobacterium leprae-induced reprogramming of adult Schwann Cells. Cell Reprogram. 2014;16(1):9-17. doi: 10.1089/cell.2013.0064
  3. Ploemacher T, Faber WR, Menke H, Rutten V, Pieters T. Reservoirs and transmission routes of leprosy; A systematic review. PLoS Negl Trop Dis. 2020;14(4). doi: 10.1371/journal.pntd.0008276
  4. Alinda MD, Geani S, Agusni RI, et al. Diagnosis and management of leprosy. Berkala Ilmu Kesehatan Kulit dan Kelamin. 2020;32(2):149. doi: 10.20473/bikk.V32.2.2020.149-157
  5. Chen KH, Lin CY, Su SB, Chen KT. Leprosy: A review of epidemiology, clinical diagnosis, and management. J Trop Med. 2022;2022:1-13. doi: 10.1155/2022/8652062
  6. Ridley DS, Jopling WH. Classification of leprosy according to immunity: A five-group system. Int J Lepr Other Mycobact Dis. 1966;34(3):255-273
  7. Eichelmann K, González González SE, Salas-Alanis JC, Ocampo-Candiani J. Leprosy. An update: definition, pathogenesis, classification, diagnosis, and treatment. Actas Dermo-Sifiliográficas (English Edition). 2013;104(7):554-563. doi: 10.1016/j.adengl.2012.03.028
  8. Fonseca AB de L, Simon M do V, Cazzaniga RA, et al. The influence of innate and adaptative immune responses on the differential clinical outcomes of leprosy. Infect Dis Poverty. 2017;6(1):5. doi: 10.1186/s40249-016-0229-3
  9. World Health Organization. Global Leprosy (Hansen’s Disease) Strategy 2021-2030. 2021
  10. Hungria EM, Bührer-Sékula S, de Oliveira RM, et al. Leprosy reactions: The predictive value of Mycobacterium leprae-specific serology evaluated in a Brazilian cohort of leprosy patients (U-MDT/CT-BR). PLoS Negl Trop Dis. 2017;11(2). doi: 10.1371/journal.pntd.0005396
  11. Thappa D, Malathi M. Fixed-duration therapy in leprosy: Limitations and opportunities. Indian J Dermatol. 2013;58(2):93. doi: 10.4103/0019-5154.108029
  12. Pescarini JM, Strina A, Nery JS, et al. Socioeconomic risk markers of leprosy in high-burden countries: A systematic review and meta-analysis. PLoS Negl Trop Dis. 2018;12(7). doi: 10.1371/journal.pntd.0006622
  13. Oktaria S, Hurif NS, Naim W, Thio HB, Nijsten TEC, Richardus JH. Dietary diversity and poverty as risk factors for leprosy in Indonesia: A case-control study. PLoS Negl Trop Dis. 2018;12(3). doi: 10.1371/journal.pntd.0006317
  14. Dwivedi VP, Banerjee A, Das I, et al. Diet and nutrition: An important risk factor in leprosy. Microb Pathog. 2019;137:103714. doi: 10.1016/j.micpath.2019.103714
  15. Pradhan S, Nayak B, Dash G. Childhood leprosy: A review. Indian Journal of Paediatric Dermatology. 2019;20(2):112. doi: 10.4103/ijpd.IJPD_47_18
  16. Sucharew H. Methods for Research Evidence Synthesis: The scoping review approach. J Hosp Med. 2019;14(7):416. doi: 10.12788/jhm.3248
  17. Tricco AC, Lillie E, Zarin W, et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann Intern Med. 2018;169(7):467-473. doi: 10.7326/M18-0850
  18. Hilma RF, Widaty S, Marissa M, Ilyas M. Association between serum level of vitamin D (25-hydroxyvitamin D) and plasma level of vitamin D receptor with bacteriological index in leprosy patients. Dermatol Reports. doi: 10.4081/dr.2023.9705
  19. Jindal R, Nagrani P, Chauhan P, Bisht YS, Sethi S, Roy S. Nutritional status of patients with leprosy attending a Tertiary Care Institute in North India. Cureus. 2022;14(3). doi: 10.7759/cureus.23217
  20. Oktaria S, Anfasa F, Menaldi SL, Bramono K, Nijsten TEC, Thio HB. Serum interleukin 6 level and nutrition status as potential predictors of clinical leprosy development among household contacts in endemic areas. Open Forum Infect Dis. 2022;9(3). doi: 10.1093/ofid/ofac010
  21. Arifin IF, Prakoeswa FRS, Prakoswa CRS, et al. Nutrition as a risk factor of child leprosy in Gresik District 2019. Jurnal Berkala Epidemiologi. 2022;10(1):86. doi: 10.20473/jbe.V10I12022.86-94
  22. Dalimunthe DA, Hazlinda CP, Partogi D. Analysis of vitamin A level in leprosy patients. Bali Medical Journal. 2021;10(2):746-748. doi: 10.15562/bmj.v10i2.2460
  23. Dennison CL, de Oliveira LB, Fraga LA de O, et al. Mycobacterium leprae-helminth co-infections and vitamin D deficiency as potential risk factors for leprosy: A case–control study in south-eastern Brazil. International Journal of Infectious Diseases. 2021;105:261-266. doi: 10.1016/j.ijid.2021.02.048
  24. Prakoeswa FRS, Satria YAA, Prasetyo B, et al. Nutritional status and blood profile amongst patient with child and maternal leprosy in endemic and non-endemic area of Indonesia. Indian Journal of Forensic Medicine & Toxicology. doi: 10.37506/ijfmt.v15i3.1576
  25. Anantharam P, Emerson LE, Bilcha KD, Fairley JK, Tesfaye AB. Undernutrition, food insecurity, and leprosy in North Gondar Zone, Ethiopia: A case-control study to identify infection risk factors associated with poverty. PLoS Negl Trop Dis. 2021;15(6). doi: 10.1371/journal.pntd.0009456
  26. Goswami K, Mazumdar I, Goswami K, Pal P, Bandyopadhyay A. A study of ascorbic acid and alpha tocoferol in different forms of leprosy. 2020
  27. Kurnianto J, S HW, Prasetyowati P, S. SH. Supplementation of zinc sulphate decrease for cytokine levels TNF-α, IL-1β and IL-6 in multibacillary leprosy patients. Health Notions. 2020;3(4):191-197. doi: 10.33846/hn30407
  28. Teixeira CSS, de Medeiros DS, Alencar CH, Ramos Júnior AN, Heukelbach J. Nutritional aspects of people affected by leprosy, between 2001 and 2014, in semi-arid Brazilian municipalities. Ciencia e Saude Coletiva. 2019;24(7):2431-2441
  29. Partogi D, Dalimunthe DA, Hazlianda CP. A study of selenium in leprosy. Open Access Maced J Med Sci. 2018;6(3):485-487. doi: 10.3889/oamjms.2018.136
  30. Zuhdan E, Kabulrachman K, Hadisaputro S. Faktor-faktor yang mempengaruhi kejadian kusta pasca kemoprofilaksis (studi pada kontak penderita kusta di Kabupaten Sampang). Jurnal Epidemiologi Kesehatan Komunitas. 2017;2(2):89. doi: 10.14710/jekk.v2i2.4001
  31. Rahfiludin MZ, Pramono A, Setiani O. Effect of vitamin A, zinc and vitamin E supplementation on immune response in seropositive leprosy subjects. Pakistan Journal of Nutrition. 2016;15(1):40-44. doi: 10.3923/pjn.2016.40.44
  32. Wagenaar I, van Muiden L, Alam K, et al. Diet-related risk factors for leprosy: A case-control study. PLoS Negl Trop Dis. 2015;9(5). doi: 10.1371/journal.pntd.0003766
  33. Kuriyan R, John’ S. Nutritional Assessment in Patients with Leprosy. 2019
  34. Borah Slater K. A Current Perspective on Leprosy (Hansen’s Disease). In: Vaccines for Neglected Pathogens: Strategies, Achievements and Challenges. Springer International Publishing; 2023:29-46. doi: 10.1007/978-3-031-24355-4_3
  35. Durakbaşa ÇU, Fettahoğlu S, Bayar A, Mutus M, Okur H. The prevalence of malnutrition and effectiveness of strongkids tool in the identification of malnutrition risks among pediatric surgical patients. Balkan Med J. 2014;31(4):313-321. doi: 10.5152/balkanmedj.2014.14374
  36. Bourke CD, Berkley JA, Prendergast AJ. Immune dysfunction as a cause and consequence of malnutrition. Trends Immunol. 2016;37(6):386-398. doi: 10.1016/
  37. Schaible UE, Kaufmann SHE. Malnutrition and infection: complex mechanisms and global impacts. PLoS Med. 2007;4(5):e115. doi: 10.1371/journal.pmed.0040115
  38. Kurpad A V. The requirements of protein & amino acid during acute & chronic infections. Indian J Med Res. 2006;124(2):129-148
  39. Beisel WR. Nutrition and immune function: Overview. J Nutr. 1996;126
  40. Thalacker-Mercer AE, Campbell WW. Dietary protein intake affects albumin fractional synthesis rate in younger and older adults equally. Nutr Rev. 2008;66(2):91-95. doi: 10.1111/j.1753-4887.2007.00012.x
  41. Don BR, Kaysen G. Poor nutritional status and inflammation: serum albumin: relationship to inflammation and nutrition. Semin Dial. 2004;17(6):432-437. doi: 10.1111/j.0894-0959.2004.17603.x
  42. Pinheiro RO, Schmitz V, Silva BJ de A, et al. Innate immune responses in leprosy. Front Immunol. 2018;9. doi: 10.3389/fimmu.2018.00518
  43. Moubasher AEA, Kamel NA, Zedan H, Raheem DEA. Cytokines in leprosy, I. Serum cytokine profile in leprosy. Int J Dermatol. 1998;37(10):733-740. doi: 10.1046/j.1365-4362.1998.00381.x
  44. Jin SH, An SK, Lee SB. The formation of lipid droplets favors intracellular Mycobacterium leprae survival in SW-10, non-myelinating Schwann cells. PLoS Negl Trop Dis. 2017;11(6). doi: 10.1371/journal.pntd.0005687
  45. Darus NIM, Lubis RD, Jusuf NK. Analysis of serum vitamin D level in leprosy patients. Bali Medical Journal. 2019;8(3). doi: 10.15562/bmj.v8i3.1453
  46. Bouillon R, Manousaki D, Rosen C, Trajanoska K, Rivadeneira F, Richards JB. The health effects of vitamin D supplementation: evidence from human studies. Nat Rev Endocrinol. 2022;18(2):96-110. doi: 10.1038/s41574-021-00593-z
  47. Lu’o’ng K vinh quốc, Hoàng Nguyễn LT. Role of the vitamin D in leprosy. Am J Med Sci. 2012;343(6):471-482
  48. Martínez-Zavala N, López-Sánchez GN, Vergara-Lopez A, Chávez-Tapia NC, Uribe M, Nuño-Lámbarri N. Vitamin D deficiency in Mexicans have a high prevalence: a cross-sectional analysis of the patients from the Centro Médico Nacional 20 de Noviembre. Arch Osteoporos. 2020;15(1):88. doi: 10.1007/s11657-020-00765-w
  49. Feenstra SG, Nahar Q, Pahan D, Oskam L, Richardus JH. Recent food shortage is associated with leprosy disease in Bangladesh: a case-control study. PLoS Negl Trop Dis. 2011;5(5): 1029. doi: 10.1371/journal.pntd.0001029
  50. Gibson A, Edgar JD, Neville CE, et al. Effect of fruit and vegetable consumption on immune function in older people: a randomized controlled trial. Am J Clin Nutr. 2012;96(6):1429-1436. doi: 10.3945/ajcn.112.039057
  51. Calder PC. Foods to deliver immune-supporting nutrients. Curr Opin Food Sci. 2022;43:136-145. doi: 10.1016/j.cofs.2021.12.006
  52. Gupta C, Goldman A. H-2 histocompatibility region: influence on the murine glucocorticoid receptor and its response. Science. 1982;216(4549):994-996. doi: 10.1126/science.7079749
  53. Klowak M, Boggild AK. A review of nutrition in neuropathic pain of leprosy. Ther Adv Infect Dis. 2022;9. doi: 10.1177/20499361221102663
  54. Villamor E, Fawzi WW. Effects of vitamin A supplementation on immune responses and correlation with clinical outcomes. Clin Microbiol Rev. 2005;18(3):446-464. doi: 10.1128/CMR.18.3.446-464.2005
  55. Filippini T, Fairweather-Tait S, Vinceti M. Selenium and immune function: a systematic review and meta-analysis of experimental human studies. Am J Clin Nutr. 2023;117(1):93-110. doi: 10.1016/j.ajcnut.2022.11.007
  56. Priefer R, Van Vo K. Selenium supplementation: benefits and drawbacks on disease states. J Chronic Dis Manag. 2023;7(1):1028. doi: 10.47739/2573-1300/1028
  57. Vázquez CMP, Netto RSM, Barbosa KBF, et al. Micronutrientes influencing the immune response in leprosy. Nutr Hosp. 2014;29(1):26-36. doi: 10.3305/nh.2014.29.1.6988

Last update:

No citation recorded.

Last update:

No citation recorded.