skip to main content

PENGARUH PEMBERIAN SARI EDAMAME (Glycine max (L.) Merrill) TERHADAP KADAR ASAM URAT TIKUS WISTAR JANTAN DIABETES

Departemen Ilmu Gizi, Fakultas Kedokteran, Universitas Diponegoro, Indonesia

Received: 16 Jul 2021; Published: 31 Jan 2022.

Citation Format:
Abstract

Latar Belakang: Beberapa penelitian menunjukkan terdapat peningkatan risiko hiperurisemia pada pasien diabetes melitus tipe 2. Faktor yang mempengaruhi hiperurismeia yaitu penurunan ekskresi asam urat dan peningkatan produksi asam urat. Asupan antioksidan dan purin merupakan faktor yang mempengaruhi produksi asam urat. Edamame berpotensi menurunkan risiko hiperurisemia karena mengandung isoflavon tinggi dan purin yang sangat rendah

Tujuan: Penelitian ini bertujuan untuk mengetahui pengaruh pemberian sari edamame terhadap kadar asam urat tikus wistar diabetes.

Metode: Penelitian ini merupakan penelitian true experimental dengan pre-post test control design.  Sampel penelitian ini adalah 24 ekor tikus wistar jantan yang dibagi dalam 4 kelompok dan masing-masing terdiri atas 6 ekor tikus [K (-); K (+); P1; P2]. Kelompok K (+), P1, dan P2 diinduksi Streptozotocin 45 mg/kgBB dan Nicotinamide 110 mg/kgBB . Kelompok P1 dan P2 diberikan intervensi sari edamame dengan dosis 1,8 ml/hari dan 3,6 ml/hari selama 28 hari. Pengambilan sampel darah melalui plexus retroorbitalis. Pemeriksaan kadar asam urat menggunakan metode FS TBHBA. Perbedaan kadar asam urat pre-post intervensi dianalisis menggunakan uji paired t test. Perbedaan antar kelompok dianalisis menggunakan uji Kruskal-Wallis dengan uji lanjut Mann-Whitney.

Hasil: Pemberian sari edamame selama 28 hari menunjukkan perbedaan kadar asam urat yang signifikan (p<0,05). Kelompok P1 dan P2 mengalami penurunan kadar asam urat signifikan sebesar 4,62+0,28 mg/dl dan 5,43+0,15 mg/dl. Kelompok P1 dan P2 memiliki perbedaan kadar asam urat yang signifikan dibandingkan kelompok K(-) dan K(+).

Simpulan:  Pemberian sari edamame dosis 1,8 ml/hari dan 3,6 ml/hari secara efektif menurunkan kadar asam urat tikus wistar diabetes.

Note: This article has supplementary file(s).

Fulltext View|Download |  Data Analysis
Data Analisis Berat Badan dan Kadar Asam Urat
Subject Asam Urat, Diabetes Melitus Tipe 2, Isoflavon, Sari Edamame
Type Data Analysis
  Download (373KB)    Indexing metadata
 Research Materials
Perhitungan Dosis Purin
Subject Asam Urat, Diabetes Melitus Tipe 2, Isoflavon, Sari Edamame
Type Research Materials
  Download (140KB)    Indexing metadata
 Keterangan Layak Etik
Ethical Exemption No. 74/EC/KEPK/2020
Subject Asam Urat, Diabetes Melitus Tipe 2, Isoflavon, Sari Edamame
Type Keterangan Layak Etik
  Download (192KB)    Indexing metadata
Keywords: Asam urat, Diabetes melitus tipe 2, Isoflavon, Sari edamame

Article Metrics:

  1. Li W, Ruan W, Peng Y, Wang D. Soy and the risk of type 2 diabetes mellitus: A systematic review and meta-analysis of observational studies. Diabetes Res Clin Pract 2018; 137: 190–199. https://doi.org/10.1016/j.diabres.2018.01.010
  2. Kementerian Kesehatan Republik Indonesia. Riset kesehatan dasar 2018. 2018; 1–200
  3. Guo M, Niu JY, Li SR, Ye S, Fang H, Zhao Y, et al. Gender differences in the association between hyperuricemia and diabetic kidney disease in community elderly patients. J Diabetes Complicat 2015; 29: 1042–1049. https://doi.org/10.3390/ijms22115808
  4. Siregar ML, Nurkhalis. Korelasi antara kadar gula darah dengan kadar asam urat pasien diabetes mellitus tipe 2. Idea Nurs J 2017; VI: 27–33. https://doi.org/10.52199/inj.v6i3.6788
  5. Pujiastuti DR, Karwur FF. Hubungan antara hiperurisemia dengan hiperglikemia pada laki-laki suku jawa. J Ilmu Gizi J Nutr Sci 2017; 8: 160–168. https://doi.org/10.26553/jikm.2017.8.3.160-168
  6. Maruhashi T, Hisatome I, Kihara Y, Higashi Y. Hyperuricemia and endothelial function: From molecular background to clinical perspectives. Atherosclerosis 2018; 278: 226–231. https://doi.org/10.1016/j.atherosclerosis.2018.10.007
  7. Ekpenyong CE, Daniel N. Roles of diets and dietary factors in the pathogenesis, management and prevention of abnormal serum uric acid levels. PharmaNutrition 2015; 3: 29–45. https://doi.org/10.1016/j.phanu.2014.12.001
  8. Lee RD. Gout : Epidemology and etiology. In: Nelms MN, Sucher K, Lacey K, Roth SL (eds) Nutrition therapy and pathophysiology. California: Cengage Learning, 2015, p. 793
  9. Kusumayanti GAD, Ni ;, Dewantari M. The influence of low purine diet and physical activity on changing of uric acid levels in hyperuricemia. Int J Health Sci (Qassim) 2017; 1: 1–9
  10. Nur R, Lioe HN, Palupi NS, Nuratama B. Optimasi formula sari edamame dengan proses pasteurisasi berdasarkan karakteristik kimia dan sensori. Mutu Pangan 2018; 5: 88–99
  11. Ningsih TE, Siswanto S, Winarsa R. Aktivitas antioksidan kedelai edamame hasil fermentasi kultur campuran oleh Rhizopus oligosporus dan Bacillus subtilis. Berk Sainstek 2018; 6: 17. https://doi.org/10.19184/bst.v6i1.7556
  12. Kaneko K, Aoyagi Y, Fukuuchi T, Inazawa K, Yamaoka N. Total purine and purine base content of common foodstuffs for facilitating nutritional therapy for gout and hyperuricemia. Biol Pharm Bull 2014; 37: 709–721. https://doi.org/10.1248/bpb.b13-00967
  13. Soyfoods Association of North America. Whole Soybean. Soyfoods Association of North America. 2006
  14. Sari DS, Probosari E. Hubungan asupan protein nabati dengan kadar asam urat di Puskesmas Banjarnegara, Kabupaten Banjarnegara. J Nutr Coll 2015; 4: 416–422. https://doi.org/10.14710/jnc.v4i4.10119
  15. Zhang M, Lin L, Liu H. Acute effect of soy and soy products on serum uric acid concentration among healthy Chinese men. Asia Pac J Clin Nutr 2018; 27: 1239–1242. https://doi.org/10.6133/apjcn.201811_27(6).0010
  16. Liu ZM, Ho CS, Chen YM, Woo J. Can soy intake affect serum uric acid level? Pooled analysis from two 6-month randomized controlled trials among Chinese postmenopausal women with prediabetes or prehypertension. Eur J Nutr 2014; 54: 51–58. https://doi.org/10.1007/s00394-014-0684-1
  17. Qin Y, Shu F, Zeng Y, Meng X, Wang B, Diao L, et al. Daidzein supplementation decreases serum triglyceride and uric acid concentrations in hypercholesterolemic adults with the effect on triglycerides being greater in those with the GA compared with the GG genotype of ESR - b Rsa I 1 – 3. J Nutr 2014; 144: 49–54. https://doi.org/10.3945/jn.113.182725
  18. Fitriyana NI. Potensi pangan fungsional berbasis edamame sebagai pangan antihiperkolesterol. J Rekapangan 2017; 11: 10–19
  19. Monteiro NES, Queirós LD, Lopes DB, Pedro AO, Macedo GA. Impact of microbiota on the use and effects of isoflavones in the relief of climacteric symptoms in menopausal women – A review. J Funct Foods 2018; 41: 100–111. https://doi.org/10.1016/j.jff.2017.12.043
  20. Saputra N, Suartha N, Dharmayudha A. Agen diabetagonik streptozotocin untuk membuat tikus putih jantan diabetes mellitus. Bul Vet Udayana 2018; 10: 116–121. https://doi.org/ 10.24843/bulvet.2018.v10.i02.p02
  21. Bacharach, Laurence. Evaluation of drug activities pharmacometrics. In: Ngatidjan (ed) Laboratorium dalam Toksikologi. Yogyakarta: Pusat Antar Universitas Bioteknologi Universitas Gajah Mada, 1990
  22. Istiani Y, Handajani SRI, Pangastuti A. Karakterisasi senyawa bioaktif isoflavon dan uji aktivitas antioksidan dari ekstrak etanol tempe berbahan baku koro pedang (Canavalia ensiformis). Biofarmasi 2015; 13: 50–58
  23. Martiningsih M, Otnel D. Gambaran kadar asam urat darah metode basah (Uricase-PAP) pada sampel serum dan plasma. J Teknol Lab 2016; 5: 20–26
  24. Dahlan M. Statistik untuk kedokteran dan kesehatan. Edisi 5. Jakarta: Salemba Medika, 2011
  25. Mitruka B, Rawnsley H. Clinical biochemical and hematological reference values in normal experimental animals and normal human. 2nd Ed. California: Masson Pu, 1981
  26. Wu B, Roseland JM, Haytowitz DB, Pehrsson PR, Ershow AG. Availability and quality of published data on the purine content of foods, alcoholic beverages, and dietary supplements. J Food Compos Anal 2019; 84: 1–8. https://doi.org/10.1016/j.jfca.2019.103281
  27. Wibawa H, Fitriani H, Samara R, Meidi I. Influence of giving breadfruit (Artocarpus altilis (Park) Fosberg.) leaves extract to decrease uric acid levels in wistar rats hyperuricemic. In: Proceedings of International Conference on Applied Science and Health, pp. 160–165
  28. Rodríguez-roque MJ, Ancos B De, Sánchez-vega R. In vitro bioaccessibility of isoflavones from a soymilk-based beverage as affected by thermal and non-thermal processing. Innov Food Sci Emerg Technol 2020; 66: 1–8. https://doi.org/10.1016/j.ifset.2020.102504
  29. Baú TR, Ida EI. Soymilk processing with higher isoflavone aglycone content. Food Chem 2015; 183: 161–168. https://doi.org/10.1016/j.foodchem.2015.03.026
  30. Djunaidi CS, Affandi DR, Praseptiangga D. Efek hipoglikemik tepung komposit (ubi jalar ungu, jagung kuning, dan kacang tunggak) pada tikus diabetes induksi streptozotocin. J Gizi Klin Indones 2014; 10: 119–126. https://doi.org/10.22146/ijcn.18859
  31. Wen W, Lin Y, Ti Z. Antidiabetic, antihyperlipidemic, antioxidant, anti-inflamatory activities of ethanolic seed extract of Annona reticulata L . in streptozotocin induced diabetic rats. Front Endocrinol (Lausanne) 2019; 10: 1–15. https://doi.org/10.3389/fendo.2019.00716
  32. Saravanan KS, Madhavan V. Antidiabetic activity of Bauhina vahli Wt . and Arn . (Caesalpiniaceae) root – a botanical source for the ayurveda drug murva. Asian J Pharm Clin Res 2019; 12: 359–362. https://doi.org/10.22159/ajpcr.2019.v12i5.31373
  33. Birgani GA, Ahangarpour A, Khorsandi L, Moghaddam HF. Anti-diabetic effect of betulinic acid on streptozotocin- nicotinamide induced diabetic male mouse model. Brazilian J Pharm Sci 2018; 54: 1–7. https://doi.org/10.1590/s2175-97902018000217171
  34. Wang-fischer Y, Garyantes T. Improving the reliability and utility of streptozotocin-induced rat diabetic model. J Diabetes Res 2018; 1–14. https://doi.org/10.1155/2018/8054073
  35. El-kordy EA, Mohammed A. Effect of genistein , a natural soy isoflavone , on pancreatic beta cells of streptozotocin-induced diabetic rats: Histological and immunohistochemical study. J Microsc Ultrastruct 2015; 3: 108–119. https://doi.org/10.1016/j.jmau.2015.03.005
  36. Aziz O. Effect of soybean seeds alone or in combination with insulin or glibenclamide on serum lipid profiles in alloxan-induced diabetic rats. Iraqi J Vet Sci 2009; 23: 17–23. https://doi.org/10.33899/ijvs.2009.5682
  37. Chen X, Wang L, Wu Y, Song S, Min H, Yang Y, et al. Effect of puerarin in promoting fatty acid oxidation by increasing mitochondrial oxidative capacity and biogenesis in skeletal muscle in diabetic rats. Nutr Diabetes 2018; 8: 1–13. https://doi.org/10.1038/s41387-017-0009-6
  38. Fawwaz M, Natalisnawati A, Baits M. Determination of isoflavon aglicone in extract of soymilk and tempeh. Ind J Teknol dan Manaj Agroindustri 2017; 6: 152–158. https://doi.org/10.21776/ub.industria.2017.006.03.6
  39. Duru KC, Kovaleva EG, Danilova IG, van der Bijl P, Belousova A V. The potential beneficial role of isoflavones in type 2 diabetes mellitus. Nutr Res 2018; 59: 1–15. https://doi.org/10.1016/j.nutres.2018.06.005
  40. Guyton A, Hall J. Buku ajar fisiologi kedokteran. Edisi 13. Jakarta: EGC, 2019
  41. Goharinia M, Zareei A, Rahimi M, Mirkhani H. Can allopurinol improve retinopathy in diabetic rats? Oxidative stress or uric acid; Which one is the culprit? Res Pharm Sci 2017; 12: 401–408. https://doi.org/10.4103/1735-5362.213985
  42. Jia Z, Zhang X, Kang S, Wu Y. Serum uric acid levels and incidence of impaired fasting glucose and type 2 diabetes mellitus : A meta-analysis of cohort studies. Diabetes Res Clin Pract 2013; 101: 88–96. https://doi.org/10.1016/j.diabres.2013.03.026
  43. Battelli MG, Bortolotti M, Polito L, Bolognesi A. The role of xanthine oxidoreductase and uric acid in metabolic syndrome. BBA - Mol Basis Dis 2018; 1864: 2557–2565. https://doi.org/10.1016/j.bbadis.2018.05.003
  44. Kim E, Lee O, Kwang J, Kim S, Lee J, Kim S, et al. Isoflavones and anthocyanins analysis in soybean (Glycine max (L.)

Last update:

No citation recorded.

Last update:

No citation recorded.