skip to main content

Perubahan Nilai Gizi dan Viabilitas Biji Lamtoro Mlanding [Leucaena leucocephala (Lam.) de Wit] pada Optimasi Proses Skarifikasi

Yasmin Aulia Rachma orcid  -  Food Technology, Department of Agriculture, Faculty of Animal and Agricultural Sciences, Diponegoro University, Semarang, Indonesia, 50275, Indonesia
Ratih Paramastuti  -  Program Studi Teknologi Pangan, Fakultas Peternakan dan Pertanian, Universitas Diponegoro, Semarang, Indonesia
Lutfi Purwitasari  -  Program Studi Teknologi Pangan, Fakultas Peternakan dan Pertanian, Universitas Diponegoro, Semarang, Indonesia
*Sri Darmanti  -  Program Studi Biologi, Fakultas Sains dan Matematika, Universitas Diponegoro, Semarang, Indonesia
Received: 10 Jul 2025; Published: 6 Aug 2025.
Editor(s): Siti Susanti, Ph.D

Citation Format:
Abstract

Biji lamtoro mlanding (Leucaena leucocephala (Lam.) de Wit) merupakan sumber protein nabati potensial yang belum termanfaatkan secara optimal, terutama karena adanya dormansi fisiologis akibat struktur kulit biji yang keras. Penelitian ini bertujuan untuk mengoptimalkan suhu dan durasi skarifikasi termal terhadap viabilitas benih serta mengevaluasi perubahan nilai gizi biji selama proses perkecambahan. Rancangan penelitian terdiri dari dua tahap, yaitu penentuan perlakuan skarifikasi terbaik berdasarkan kecepatan perkecambahan dan Germination Rate Index (GRI), dan analisis perubahan komposisi karbohidrat, protein kasar, dan protein terlarut selama 72 jam perkecambahan pada kondisi optimal. Hasil menunjukkan bahwa perlakuan 70 °C selama 15 menit menghasilkan viabilitas terbaik dengan kecepatan perkecambahan ±80%/hari dan GRI ±80. Perkecambahan selama 72 jam meningkatkan kandungan karbohidrat hingga 43,13%, protein kasar hingga 37,16%, dan memodifikasi kandungan protein terlarut secara optimal di durasi 72 jam perkecambahan. Hasil ini menunjukkan bahwa skarifikasi dan perkecambahan dapat meningkatkan kualitas gizi biji lamtoro mlanding, memperkuat potensinya sebagai bahan pangan fungsional lokal.

Fulltext View|Download
Keywords: perkecambahan; dorman; biokonversi nutrien; skarifikasi

Article Metrics:

  1. Agustia, F. C., Supriyadi, S., Murdiati, A., & Indrati, R. (2023). Germination of jack bean [Canavalia ensiformis (L.) DC.] and its impact on nutrient and anti-nutrient composition. Food Research, 7(5), 210–218. https://doi.org/10.26656/fr.2017.7(5).905
  2. Alshoaibi, A. (2021). Seed Germination, Seedling Growth and Photosynthetic Responses to Temperature in the Tropical Tree Moringa oleifera and Its Relative Desert, Moringa peregrina. Egyptian Journal of Botany, 0(0), 0–0. https://doi.org/10.21608/ejbo.2021.63271.1631
  3. Aquino-González, L. V., Noyola-Altamirano, B., Méndez-Lagunas, L. L., Rodríguez-Ramírez, J., Sandoval-Torres, S., & Bernal, L. G. B. (2023). Potential of Leucaena leucocephala and Leucaena esculenta Seeds in Human Nutrition: Composition, Techno-functional Properties, Toxicology and Pretreatment Technologies. LEGUME RESEARCH - AN INTERNATIONAL JOURNAL, Of. https://doi.org/10.18805/LRF-743
  4. Barduche, D., Livramento, K. G. do, Judice, W. A. S., Paiva, L. V., Neto, L. J., & Guimarães, R. M. (2018). Proteolysis in the Subtropical Woody Tree Anadenanthera colubrina (Angico) Seeds during and after Germination. American Journal of Plant Sciences, 09(06), 1169–1190. https://doi.org/10.4236/ajps.2018.96088
  5. Bera, I., O’Sullivan, M., Flynn, D., & Shields, D. C. (2023). Relationship between Protein Digestibility and the Proteolysis of Legume Proteins during Seed Germination. Molecules, 28(7), 3204. https://doi.org/10.3390/molecules28073204
  6. Botcha, S., & Prattipati, S. (2020). Role of amylase and protease in germinating<i>Sterculia urens</i> Roxb. Bangladesh Journal of Scientific and Industrial Research, 55(2), 107–112. https://doi.org/10.3329/bjsir.v55i2.47631
  7. Chen, X., Tume, R. K., Xu, X., & Zhou, G. (2017). Solubilization of myofibrillar proteins in water or low ionic strength media: Classical techniques, basic principles, and novel functionalities. Critical Reviews in Food Science and Nutrition, 57(15), 3260–3280. https://doi.org/10.1080/10408398.2015.1110111
  8. Chinnasamy, G. P., Sundareswaran, S., Renganayaki, P. R., & Vetrivel, M. (2021). Radicle emergence test as a quick vigour test to predict field emergence performance in rice (Oryza sativa L.) seed lots. Journal of Applied and Natural Science, 13(SI), 86–93. https://doi.org/10.31018/jans.v13iSI.2805
  9. Chrenková, M., Čerešňáková, Z., Weisbjerg, M. R., Formelová, Z., Poláčiková, M., & Vondráková, M. (2014). Characterization of proteins in feeds according to the CNCPS and comparison to in situ parameters. Czech Journal of Animal Science, 59(6), 288–295. https://doi.org/10.17221/7499-CJAS
  10. Ciereszko, I. (2018). Regulatory roles of sugars in plant growth and development. Acta Societatis Botanicorum Poloniae, 87(2). https://doi.org/10.5586/asbp.3583
  11. Darmanti, S., Santosa, S., Dewi, K., & Nugroho, L. H. (2015). Allelopathic Effect of Cyperus rotundus L. on Seed Germination and Initial Growth of Glycine max L. cv. Grobogan. Bioma : Berkala Ilmiah Biologi, 17(2), 61. https://doi.org/10.14710/bioma.17.2.61-67
  12. Deng, S., Deng, Z., Wang, X., Lu, H., & Xue, H. (2021). Effects of Temperature, Scarification, Stratification, Phytohormones, and After-Ripening on the Dormancy and Germination of Eucommia ulmoides Oliv. Seeds. Forests, 12(11), 1593. https://doi.org/10.3390/f12111593
  13. Dhanda, S., & Chauhan, B. S. (2022). Seed germination ecology of leucaena (Leucaena leucocephala) as influenced by various environmental parameters. Weed Science, 70(3), 335–340. https://doi.org/10.1017/wsc.2022.18
  14. Herranz, J. M., Copete, E., Copete, M. A., Márquez, J., & Ferrandis, P. (2017). Dormancy induction by summer temperatures and/or desiccation in imbibed seeds of trumpet daffodils Narcissus alcaracensis and N. longispathus (Amaryllidaceae). Plant Biology, 19(1), 46–52. https://doi.org/10.1111/plb.12467
  15. Hilooglu, M., Sozen, E., Yucel, E., & Kandermir, A. (2018). Chemical Applications, Scarification and Stratification Effects on Seed Germination of Rare Endemic Verbascum calycosum Hausskn. ex Murb. (Scrophulariaceae). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(2), 376–380. https://doi.org/10.15835/nbha46210746
  16. Ishihara, K. L., Honda, M. D., Pham, D. T., & Borthakur, D. (2016). Transcriptome analysis of Leucaena leucocephala and identification of highly expressed genes in roots and shoots. Transcriptomics: Open Access, 4(1). https://doi.org/10.4172/2329-8936.1000135
  17. Kurniawan Lombu, W., Wayan Wisaniyasa, N., Sri Wiadnyani, A., Jurusan Ilmu dan Teknologi Pangan Fakultas Teknologi Pertanian UNUD, M., & Jurusan Ilmu dan Teknologi Pangan Fakultas Teknologi Pertanian UNUD, D. (2018). Perbedaan karakteristik kimia dan daya cerna pati tepung jagung dan tepung kecambah jagung (Zea mays L.) (Vol. 7, Issue 1)
  18. Liang, G., Hua, Y., Chen, H., Luo, J., Xiang, H., Song, H., & Zhang, Z. (2023). Increased nitrogen use efficiency via amino acid remobilization from source to sink organs in Brassica napus. The Crop Journal, 11(1), 119–131. https://doi.org/10.1016/j.cj.2022.05.011
  19. Mácová, K., Prabhullachandran, U., Štefková, M., Spyroglou, I., Pěnčík, A., Endlová, L., Novák, O., & Robert, H. S. (2022). Long-Term High-Temperature Stress Impacts on Embryo and Seed Development in Brassica napus. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.844292
  20. Mæhre, H., Dalheim, L., Edvinsen, G., Elvevoll, E., & Jensen, I.-J. (2018). Protein Determination—Method Matters. Foods, 7(1), 5. https://doi.org/10.3390/foods7010005
  21. Martineau-Côté, D., Achouri, A., Karboune, S., & L’Hocine, L. (2022). Faba Bean: An Untapped Source of Quality Plant Proteins and Bioactives. Nutrients, 14(8), 1541. https://doi.org/10.3390/nu14081541
  22. Rachma, Y. A., Indrati, R., & Supriyadi, S. (2022). Karakteristik Perkecambahan Biji Lamtoro [Leucaena leucocephala (Lam.)de Wit] pada Perlakuan Skarifikasi serta Perubahan Nilai Gizi Setelah Perkecambahan. Buletin Anatomi Dan Fisiologi, 7(1), 11–19. https://doi.org/10.14710/baf.7.1.2022.11-19
  23. Saxena, H., Mohammad, N., Parihar, S., & Kumar, S. (2020). Effect of seed treatments and potting medium on seed germination parameters in threatened Stereospermum suaveolens (Roxb.) DC. – A dashmool species. Environment Conservation Journal, 21(1 & 2), 187–192. https://doi.org/10.36953/ECJ.2020.211225
  24. Sean, M. C., Brian, J. P., & S., C. M. (2022). Substrate temperature and seed scarification on germination parameters of butterfly pea (Clitoria ternatea L.). Journal of Horticulture and Forestry, 14(4), 49–55. https://doi.org/10.5897/JHF2022.0700
  25. Side, T. H. R., Mastuti, R., & Widiani, A. R. (2021). The Effectiveness of Scarification Technique to Break Dormancy Kenaf Seed (Hibiscus cannabinus L.). Jurnal Penelitian Tanaman Industri, 27(1), 34. https://doi.org/10.21082/jlittri.v27n1.2021.34-43
  26. Tahing, A., Semang, A., & Vertygo, S. (2024). The Effect of Hot Water Scarification Duration on Germination and Growth of Indigofera zollingeriana Seeds. Jurnal Biologi Tropis, 24(2), 318–324. https://doi.org/10.29303/jbt.v24i2.6848
  27. Wu, Y., & Shen, Y. (2021). Dormancy in Tilia miqueliana is attributable to permeability barriers and mechanical constraints in the endosperm and seed coat. Brazilian Journal of Botany, 44(3), 725–740. https://doi.org/10.1007/s40415-021-00749-1
  28. Zaynab, M., Kanwal, S., Furqan, M., Islam, W., Noman, A., Ali, G. M., Rehman, N., Zafar, S., Sughra, K., & Jahanzab, M. (2017). Proteomic approach to address low seed germination in Cyclobalnopsis gilva. Biotechnology Letters, 39(10), 1441–1451. https://doi.org/10.1007/s10529-017-2393-3

Last update:

No citation recorded.

Last update:

No citation recorded.