skip to main content

Dampak Suhu, Pengemasan, dan Lama Penyimpanan terhadap Warna, Retensi Massa, dan Penyusunan Bobot Buah Pisang Kepok (Musa paradisiaca)

Sirly Eka Nur Intan  -  Department of Agriculture, Universitas Diponegoro, Indonesia
Ratih Paramastuti  -  Program Studi Teknologi Pangan, Departemen Pertanian, Fakultas Peternakan dan Pertanian, Universitas Diponegoro, Semarang, Indonesia
Yasmin Aulia Rachma  -  Program Studi Teknologi Pangan, Departemen Pertanian, Fakultas Peternakan dan Pertanian, Universitas Diponegoro, Semarang, Indonesia
*Swastika Dewi  -  Program Studi Teknologi Pangan, Departemen Pertanian, Fakultas Peternakan dan Pertanian, Universitas Diponegoro, Semarang, Indonesia
Received: 25 Jul 2025; Published: 25 Aug 2025.
Editor(s): Siti Susanti, Ph.D

Citation Format:
Abstract

Pisang kepok (Musa paradisiaca) mengalami perubahan fisiologis dan biokimia yang kompleks selama pematangan dan penyimpanan pascapanen, yang secara signifikan memengaruhi kualitas visual, tekstur, nilai gizi, dan daya jualnya. Penelitian ini meneliti pengaruh suhu penyimpanan dan kemasan terhadap perubahan warna, retensi massa buah, dan kehilangan bobot pada pisang kepok selama periode penyimpanan enam hari. Parameter warna (L*, a*, dan b*) diukur menggunakan ruang warna CIELAB, retensi massa, sementara kehilangan bobot ditentukan dengan membandingkan massa buah awal dan akhir. Lama penyimpanan secara signifikan memengaruhi semua parameter warna, terutama nilai L* dan a* (p < 0.05), yang menunjukkan perubahan dari warna hijau ke kuning dan rona kemerahan selama pematangan. Kehilangan bobot terjadi secara konsisten dan signifikan pada semua perlakuan, dengan kehilangan paling parah terjadi pada suhu ruang. Kemasan plastik dan pendinginan dapat mengurangi kehilangan bobot dengan bertindak sebagai penghalang difusi uap air dan memperlambat proses metabolik. Pembekuan mempertahankan massa buah lebih efektif dibandingkan penyimpanan pada suhu ruang, namun tetap mengalami fluktuasi akibat terjadinya sublimasi dan kemungkinan terjadinya mikroretakan pada jaringan. Temuan ini menyoroti pentingnya mengoptimalkan kondisi penyimpanan untuk mempertahankan kualitas pisang kepok dan meminimalkan kerugian pascapanen.

Fulltext View|Download

Article Metrics:

  1. Abiso, E., Alemnew, A., Eshetu, S., & Awoke, M. (2018). Effect of Packaging Materials and Postharvest Treatments on Postharvest Quality and Shelf Life of Banana Fruits (Musa Spp). Annals, Food Science and Technology, 19(2), 292–299
  2. Affandi, F. Y., Verschoor, J. A., Paillart, M. J. M., Verdonk, J. C., Woltering, E. J., & Schouten, R. E. (2021). Low Oxygen Storage Improves Tomato Postharvest Cold Tolerance, Especially for Tomatoes Cultivated with Far-Red LED Light. Foods, 10(8), 1699. https://doi.org/10.3390/foods10081699
  3. Alam, M., Biswas, M., Hasan, M. M., Hossain, M. F., Zahid, M. A., Al-Reza, M. S., & Islam, T. (2023). Quality attributes of the developed banana flour: Effects of drying methods. Heliyon, 9(7), e18312. https://doi.org/10.1016/j.heliyon.2023.e18312
  4. Bof, M. J., Laurent, F. E., Massolo, F., Locaso, D. E., Versino, F., & García, M. A. (2021). Bio-Packaging Material Impact on Blueberries Quality Attributes under Transport and Marketing Conditions. Polymers, 13(4), 481. https://doi.org/10.3390/polym13040481
  5. Brackmann, A., Thewes, F. R., Anese, R. de O., Both, V., & Gasperin, A. R. de. (2014). Respiration rate and its effect on mass loss and chemical qualities of “Fuyu” persimmon fruit stored in controlled atmosphere. Ciência Rural, 44(4), 612–615. https://doi.org/10.1590/S0103-84782014000400006
  6. Chen, N., Wei, W., Yang, Y., Chen, L., Shan, W., Chen, J., Lu, W., Kuang, J., & Wu, C. (2024). Postharvest Physiology and Handling of Guava Fruit. Foods, 13(5), 805. https://doi.org/10.3390/foods13050805
  7. Chrysargyris, A., Rousos, C., Xylia, P., & Tzortzakis, N. (2021). Vapour Application of Sage Essential Oil Maintain Tomato Fruit Quality in Breaker and Red Ripening Stages. Plants, 10(12), 2645. https://doi.org/10.3390/plants10122645
  8. Du, L., Song, J., Forney, C., Palmer, L. C., Fillmore, S., & Zhang, Z. (2016). Proteome changes in banana fruit peel tissue in response to ethylene and high-temperature treatments. Horticulture Research, 3(1), 16012. https://doi.org/10.1038/hortres.2016.12
  9. Dwi Arista, N. I., & Ardiningtyas, S. A. (2024). Comparative analysis of ethylene-induced ripening in climacteric and non-climacteric fruits: implications for post-harvest management. Social Agriculture, Food System, and Environmental Sustainability, 1(2), 90–100. https://doi.org/10.61511/safses.v1i2.2024.1202
  10. Escalante-Minakata, P., Ibarra-Junquera, V., Ornelas-Paz, J. de J., García-Ibáñez, V., Virgen-Ortíz, J. J., González-Potes, A., Pérez-Martínez, J. D., & Orozco-Santos, M. (2018). Comparative study of the banana pulp browning process of ‘Giant Dwarf’ and FHIA-23 during fruit ripening based on image analysis and the polyphenol oxidase and peroxidase biochemical properties. 3 Biotech, 8(1), 30. https://doi.org/10.1007/s13205-017-1048-3
  11. Hapsari, L., & Lestari, D. A. (2016). Fruit Characteristic and Nutrient Values of Four Indonesian Banana Cultivars (Musa Spp.) at Different Genomic Groups. AGRIVITA Journal of Agricultural Science, 38(3). https://doi.org/10.17503/agrivita.v38i3.696
  12. Herrera, K. Y., Jaramillo, J. C., Riaño, C., Suarez, C., Sierra, C. A., Zuluaga, C. M., & Castellanos, D. A. (2024). Evaluation of perforation‐mediated modified atmosphere packaging for the commercialization of bulk purple passion fruit under refrigeration. Journal of Food Science, 89(12), 8673–8688. https://doi.org/10.1111/1750-3841.17547
  13. Jedermann, R., Praeger, U., Geyer, M., & Lang, W. (2014). Remote quality monitoring in the banana chain. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372(2017), 20130303. https://doi.org/10.1098/rsta.2013.0303
  14. Lameira, R. das C., Silva, B. M. P. da, Valentini, S. R. de T., Cia, P., & Bron, I. U. (2020). Refrigeration and modified atmosphere to the conservation of ‘Malasia’ Star fruit. Ciência Rural, 50(5). https://doi.org/10.1590/0103-8478cr20190646
  15. Li, D., Zhu, Z., & Sun, D.-W. (2018). Effects of freezing on cell structure of fresh cellular food materials: A review. Trends in Food Science & Technology, 75, 46–55. https://doi.org/10.1016/j.tifs.2018.02.019
  16. Ponce-Valadez, M., Escalona-Buendía, H. B., Villa-Hernández, J. M., de León-Sánchez, F. D., Rivera-Cabrera, F., Alia-Tejacal, I., & Pérez-Flores, L. J. (2016). Effect of refrigerated storage (12.5°C) on tomato (Solanum lycopersicum) fruit flavor: A biochemical and sensory analysis. Postharvest Biology and Technology, 111, 6–14. https://doi.org/10.1016/j.postharvbio.2015.07.010
  17. Pongprasert, N., Srilaong, V., & Sunpapao, A. (2021). Postharvest senescent dark spot development mechanism of Musa acuminata (“Khai” banana) peel associated with chlorophyll degradation and stomata cell death. Journal of Food Biochemistry, 45(6). https://doi.org/10.1111/jfbc.13745
  18. Sirijariyawat, A., & Charoenrein, S. (2012). Freezing Characteristics and Texture Variation After Freezing and Thawing of Four Fruit Types. Songklanakarin J. Sci. Technol., 34(5), 517–523
  19. Wang, N.-N., Sun, D.-W., Yang, Y.-C., Pu, H., & Zhu, Z. (2016). Recent Advances in the Application of Hyperspectral Imaging for Evaluating Fruit Quality. Food Analytical Methods, 9(1), 178–191. https://doi.org/10.1007/s12161-015-0153-3
  20. Zheng, Y., Yang, Z., Wei, T., & Zhao, H. (2022). Response of Tomato Sugar and Acid Metabolism and Fruit Quality under Different High Temperature and Relative Humidity Conditions. Phyton, 91(9), 2033–2054. https://doi.org/10.32604/phyton.2022.019468

Last update:

No citation recorded.

Last update:

No citation recorded.