slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor
RELATIONSHIP BETWEEN CLIMATE VARIABLES AND DENGUE INCIDENCE IN WEST INDONESIA | Ghiffari | Jurnal Kedokteran Diponegoro (Diponegoro Medical Journal) skip to main content

RELATIONSHIP BETWEEN CLIMATE VARIABLES AND DENGUE INCIDENCE IN WEST INDONESIA

*Ahmad Ghiffari orcid scopus publons  -  Department Parasitology and Microbiology, Faculty of Medicine, Universitas Muhammadiyah Palembang, Jl. A. Yani, Palembang, Indonesia 30263, Indonesia
Ratika Febriani  -  Department Physiology, Faculty of Medicine, Universitas Muhammadiyah Palembang, Jl. A. Yani, Palembang, Indonesia 30263, Indonesia
Galuh Pratama Mynanda  -  Faculty of Medicine, Universitas Muhammadiyah Palembang, Jl. A. Yani, Palembang, Indonesia 30263, Indonesia
Thia Prameswarie  -  Department Parasitology and Microbiology, Faculty of Medicine, Universitas Muhammadiyah Palembang, Jl. A. Yani, Palembang, Indonesia 30263, Indonesia

Citation Format:
Abstract

Background: Dengue fever is a major public health problem, especially in heavily populated metropolitan areas like Palembang City, Indonesia. Gaining insight into the impact of climatic conditions on the dynamics of dengue transmission is essential for guiding specific public health actions. Objective: The objective of this study is to examine the correlation between temperature, rainfall, wind speed, air humidity, and the occurrence of dengue disease in Palembang City. Methods: Using observational data collected from 2016 to 2019 and 2022, we applied bivariate analytic approaches to evaluate the associations between meteorological factors and the incidence of dengue disease. Results: The findings demonstrate a notable inverse relationship between temperature and the occurrence of dengue disease, although rainfall displayed a favorable relationship. The relationships between wind speed, air humidity, air pressure, and dengue fever incidence were shown to be weaker. Conclusion: These findings highlight the significance of utilizing meteorological factors in early warning systems to enhance disease surveillance and control measures in metropolitan environments. This work helps to the creation of evidence-based strategies for reducing the burden of dengue fever in locations where it is common by explaining the intricate connections between climatic conditions and the dynamics of dengue transmission.

Fulltext View|Download
Keywords: Dengue Fever; Disease Transmission; High Temperature; Observational Design; Urban City

Article Metrics:

  1. Chen, Y. et al. Use of unmanned ground vehicle systems in urbanized zones: A study of vector Mosquito surveillance in Kaohsiung. PLoS Negl Trop Dis 17, e0011346–e0011346 (2023)
  2. Zeng, Q. et al. Dengue transmission dynamics prediction by combining metapopulation networks and Kalman filter algorithm. PLoS Negl Trop Dis 17, e0011418–e0011418 (2023)
  3. Tu, W., Chiu, M.-C., Kuo, M.-H. & Dai, S.-M. Joint influence of architectural and spatiotemporal factors on the presence of Aedes aegypti in urban environments. Pest Manag Sci (2023) doi: 10.1002/ps.7634
  4. Man, O. et al. Characterizing dengue transmission in rural areas: A systematic review. PLoS Negl Trop Dis 17, e0011333–e0011333 (2023)
  5. Kozlova, E. N. & OLIVEIRA, R. Predicting dengue incidence leveraging internet-based data sources. A case study in 20 cities in Brazil. PLoS Negl Trop Dis 16, e0010071–e0010071 (2022)
  6. Yang, X., Quam, M. B. M., Quam, M. B. M., Zhang, T. & Sang, S. Global burden for dengue and the evolving pattern in the past 30 years. J Travel Med (2021) doi: 10.1093/JTM/TAAB146
  7. Zeng, Q. et al. Dengue transmission dynamics prediction by combining metapopulation networks and Kalman filter algorithm. PLoS Negl Trop Dis 17, e0011418–e0011418 (2023)
  8. Lopez, M. S. et al. Relationship between Climate Variables and Dengue Incidence in Argentina. Environ Health Perspect 131, (2023)
  9. Liu, Y., Wang, X., Tang, S. & Cheke, R. The relative importance of key meteorological factors affecting numbers of mosquito vectors of dengue fever. PLoS Negl Trop Dis 17, e0011247–e0011247 (2023)
  10. Figueredo, M. B. & Monteiro, R. L. S. Analysis of the correlation between climatic variables and Dengue cases in the city of Alagoinhas/BA. Dental science reports 13, (2023)
  11. Li, Z. & Dong, J. Big Geospatial Data and Data-Driven Methods for Urban Dengue Risk Forecasting: A Review. Remote Sens (Basel) 14, 5052 (2022)
  12. Ju, X. et al. How air pollution altered the association of meteorological exposures and the incidence of dengue fever. Environmental Research Letters 17, 124041 (2022)
  13. Morin, C. W., Sellers, S. & Ebi, K. L. Seasonal variations in dengue virus transmission suitability in the Americas. Environmental Research Letters 17, 64042 (2022)
  14. Xavier, L. L., Honório, N. A., Pessanha, J. F. M. & Peiter, P. C. Analysis of climate factors and dengue incidence in the metropolitan region of Rio de Janeiro, Brazil. PLoS One 16, (2021)
  15. Li, C. et al. Interaction of climate and socio-ecological environment drives the dengue outbreak in epidemic region of China. PLoS Negl Trop Dis 15, (2021)
  16. Bhatia, S. et al. A Retrospective Study of Climate Change Affecting Dengue: Evidences, Challenges and Future Directions. Front Public Health 10, (2022)
  17. Edussuriya, C., Deegalla, S. & Gawarammana, I. An accurate mathematical model predicting number of dengue cases in tropics. PLoS Negl Trop Dis 15, (2021)
  18. Faridah, L. et al. Temporal Correlation Between Urban Microclimate, Vector Mosquito Abundance, and Dengue Cases. J Med Entomol 59, 1008–1018 (2022)
  19. Ye, G. et al. Clinical Features and Transmission Risk Analysis of Dengue Virus Infections in Shenzhen, During 2014-2019. Comput Struct Biotechnol J (2023) doi: 10.1016/j.csbj.2023.07.001
  20. Ochida, N. et al. Modeling present and future climate risk of dengue outbreak, a case study in New Caledonia. Environmental Health 21, (2022)
  21. Ghiffari, A., Anwar, C., Soleha, M., Prameswarie, T. & Anggina, D. N. The Correlation of Climatic Factors with Incidence of Dengue Hemorrhagic Fever in Palembang Bari General Hospital. in IOP Conference Series: Earth and Environmental Science vol. 810 (IOP Publishing Ltd, 2021)
  22. Minarti, M. et al. Impact of climate variability and incidence on dengue hemorrhagic fever in Palembang City, South Sumatra, Indonesia. Open Access Maced J Med Sci 9, 952–958 (2021)
  23. Wijaya, K. P. et al. Learning from panel data of dengue incidence and meteorological factors in Jakarta, Indonesia. Stochastic Environmental Research and Risk Assessment 35, 437–456 (2021)
  24. Alomar, A. & Alto, B. W. Temperature-Mediated Effects on Mayaro Virus Vector Competency of Florida Aedes aegypti Mosquito Vectors. Viruses 14, 880 (2022)
  25. Ciota, A. T., Keyel, A. C. & Keyel, A. C. The Role of Temperature in Transmission of Zoonotic Arboviruses. Viruses 11, 1013 (2019)
  26. Ruder, M. G. et al. Effect of Temperature on Replication of Epizootic Hemorrhagic Disease Viruses in Culicoides sonorensis (Diptera: Ceratopogonidae). J Med Entomol 52, 1050–1059 (2015)
  27. Samuel, G. H., Adelman, Z. N. & Myles, K. M. Temperature-dependent effects on the replication and transmission of arthropod-borne viruses in their insect hosts. Curr Opin Insect Sci 16, 108–113 (2016)
  28. Brand, S. & Keeling, M. J. The impact of temperature changes on vector-borne disease transmission: Culicoides midges and bluetongue virus. J R Soc Interface 14, 20160481 (2017)
  29. Shocket, M. S. et al. Transmission of West Nile and five other temperate mosquito-borne viruses peaks at temperatures between 23°C and 26°C. Elife 9, (2020)
  30. DeFelice, N. et al. Use of temperature to improve West Nile virus forecasts. PLoS Comput Biol 14, 1–25 (2018)
  31. Stewart, P. D. S. & Bach, J. L. Temperature dependent viral tropism: understanding viral seasonality and pathogenicity as applied to the avoidance and treatment of endemic viral respiratory illnesses. Rev Med Virol (2021) doi: 10.1002/RMV.2241
  32. Nova, N. et al. Susceptible host availability modulates climate effects on dengue dynamics. Ecol Lett 24, 415–425 (2021)
  33. Singh, P. S. & Chaturvedi, H. K. A retrospective study of environmental predictors of dengue in Delhi from 2015 to 2018 using the generalized linear model. Dental science reports 12, (2022)
  34. Chumpu, R., Khamsemanan, N. & Nattee, C. The association between dengue incidences and provincial-level weather variables in Thailand from 2001 to 2014. PLoS One 14, (2019)
  35. Xavier, L. L., Honório, N. A., Pessanha, J. F. M. & Peiter, P. C. Analysis of climate factors and dengue incidence in the metropolitan region of Rio de Janeiro, Brazil. PLoS One 16, (2021)
  36. Kakarla, S. G. et al. Lag effect of climatic variables on dengue burden in India. Epidemiol Infect 147, (2019)
  37. Lu, X. et al. Species-specific climate Suitable Conditions Index and dengue transmission in Guangdong, China. Parasit Vectors 15, (2022)
  38. Martheswaran, T., Hamdi, H., Al-Barty, A. M. F., Zaid, A. A. A. & Das, B. B. Prediction of dengue fever outbreaks using climate variability and Markov chain Monte Carlo techniques in a stochastic susceptible-infected-removed model. Dental science reports 12, (2022)
  39. Sánchez-Gendriz, I. et al. Data-driven computational intelligence applied to dengue outbreak forecasting: a case study at the scale of the city of Natal, RN-Brazil. Dental science reports 12, (2022)
  40. Shragai, T. et al. Distance to public transit predicts spatial distribution of dengue virus incidence in Medellín, Colombia. Dental science reports 12, (2022)
  41. García, J. A. O., Osorio, S. R., Arias, O. A. M., Muñoz, C. A. A. & Minoli, C. A. A. Simulation model for the dynamics of dengue with asymptomatic transmission and the effect of temperature. F1000Res 11, 539 (2022)

Last update:

No citation recorded.

Last update:

No citation recorded.