skip to main content

SINTESIS SENYAWA METABOLIT OLEH MIKROBIOTA SALURAN CERNA DAN METABOLIC DYSFUNCTION-ASSOCIATED STEATOTIC LIVER DISEASE (MASLD): TINJAUAN PADA SCFA DAN BCAA

Departemen Ilmu Gizi, Fakultas Kedokteran, Universitas Diponegoro, Semarang, Jawa Tengah, Indonesia

Received: 3 Dec 2024; Revised: 31 Dec 2024; Accepted: 2 Jan 2025; Available online: 30 Apr 2025; Published: 30 Apr 2025.

Citation Format:
Abstract

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), affects more than one-third of the adult population and over ten percent of children. The global prevalence of MASLD is estimated to range from 32% to 37.3%, with higher prevalence in men and individuals with obesity. The pathophysiology of MASLD is highly complex, starting with excessive lipid accumulation in the liver, oxidative stress, mitochondrial dysfunction, and ending with disruptions in the gut-microbiota-liver axis. In the last decade, the gastrointestinal microbiota has been recognized as a major regulator of energy homeostasis and metabolism, with microbiota imbalance affecting liver metabolism, adipose tissue, and muscle. Components of the microbiota metabolites, such as short-chain fatty acids (SCFA) and branched-chain amino acids (BCAA), play a crucial role in the gut-host-microbiome metabolic axis and the development of MASLD. This review discusses the relationship between microbiota-related metabolites detected through metabolomics, as well as the potential role of SCFAs and BCAAs as biomarkers for early detection of MASLD.

Keyword : Microbiota; metabolite; metabolic dysfunction-associated steatotic liver disease (MASLD);  short-chain fatty acids (SCFA); branched-chain amino acids (BCAA)

 

ABSTRAK

Metabolic dysfunction-associated steatotic liver disease (MASLD), sebelumnya dikenal sebagai non-alcoholic fatty liver disease (NAFLD), mempengaruhi lebih dari sepertiga populasi dewasa dan lebih dari sepuluh persen anak-anak. Prevalensi MASLD diperkirakan mencapai 32% hingga 37,3% secara global, dengan prevalensi yang lebih tinggi pada laki-laki dan individu dengan obesitas. Patofisiologi MASLD sangat kompleks, dimulai dengan akumulasi lipid berlebihan di hati, stres oksidatif, disfungsi mitokondria, dan berakhir pada gangguan microbiota-gut-liver-axis. Dalam 10 tahun terakhir, mikrobiota saluran cerna telah dikenali sebagai pengatur utama homeostasis energi dan metabolisme, dengan ketidakseimbangan mikrobiota yang mempengaruhi metabolisme hati, jaringan adiposa, dan otot. Komponen metabolit mikrobiota, seperti asam lemak rantai pendek atau short-chain fatty acid (SCFA) dan asam amino rantai cabang atau branched-chain amino acid (BCAA), berperan penting dalam jalur gut host-microbiome metabolic axis dan perkembangan MASLD. Ulasan ini membahas hubungan antara metabolit terkait mikrobiota yang terdeteksi melalui metabolomik, serta peran SCFA dan BCAA sebagai biomarker potensial dalam deteksi dini MASLD.

Kata kunci : Mikrobiota; metabolit; metabolic dysfunction-associated steatotic liver disease (MASLD);  short-chain fatty acids (SCFA); branched-chain amino acids (BCAA)


Fulltext View|Download
Keywords: Mikrobiota; metabolit; metabolic dysfunction-associated steatotic liver disease (MASLD); short-chain fatty acids (SCFA); branched-chain amino acids (BCAA)

Article Metrics:

  1. Krag A, Buti M, Lazarus J V., Allen AM, Bowman J, Burra P, et al. Uniting to defeat steatotic liver disease: A global mission to promote healthy livers and healthy lives. J Hepatol [Internet]. 2023 Nov;79(5):1076–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0168827823050419. DOI of original article:
  2. Sahota, Amandeep K, Warren L S, Kimberly P N, Steven T K. et al. Incidence of Nonalcoholic Fatty Liver Disease in Children: 2009–2018. Pediatrics [Internet]. 2020 Dec;146(6):e20200771. Available from: https://pubmed.ncbi.nlm.nih.gov/33214329/. doi: 10.1542/peds.2020-0771
  3. Rinella ME, Lazarus J V., Ratziu V, Francque SM, Sanyal AJ, Kanwal F, et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology [Internet]. 2023 Dec;78(6):1966–86. Available from: https://journals.lww.com/10.1097/HEP.0000000000000520. doi: 10.1097/HEP.0000000000000520
  4. Tacke F, Horn P, Wai-Sun Wong V, Ratziu V, Bugianesi E, Francque S, et al. EASL–EASD–EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J Hepatol [Internet]. 2024;81(3):492–542. Available from: https://doi.org/10.1016/j.jhep.2024.04.031
  5. British Liver Trust. MASLD, NAFLD and fatty liver disease. 2024; Available from: https://britishlivertrust.org.uk/information-and-support/liver-conditions/masld-nafld-and-fatty-liver-disease/
  6. Eslam M, Sarin SK, Wong VW-S, Fan J-G, Kawaguchi T, Ahn SH, et al. The Asian Pacific Association for the Study of the Liver clinical practice guidelines for the diagnosis and management of metabolic associated fatty liver disease. Hepatol Int [Internet]. 2020 Dec 1;14(6):889–919. Available from: https://link.springer.com/10.1007/s12072-020-10094-2. doi: 10.1007/s12072-020-10094-2
  7. Alboraie M, Butt AS, Piscoya A, Dao Viet H, Hotayt B, Al Awadhi S, et al. Why MASLD Lags Behind MAFLD: A Critical Analysis of Diagnostic Criteria Evolution in Metabolic Dysfunction-Associated Liver Diseases. Med Sci Monit [Internet]. 2024 Jul 1;30. Available from: https://www.medscimonit.com/abstract/index/idArt/945198. doi: 10.12659/MSM.945198
  8. Duseja A, Singh SP, Saraswat VA, Acharya SK, Chawla YK, Chowdhury S, et al. Non-alcoholic Fatty Liver Disease and Metabolic Syndrome—Position Paper of the Indian National Association for the Study of the Liver, Endocrine Society of India, Indian College of Cardiology and Indian Society of Gastroenterology. J Clin Exp Hepatol [Internet]. 2015 Mar;5(1):51–68. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0973688315000353. doi: http://dx.doi.org/10.1016/j.jceh.2015.02.006
  9. Choudhuri G, R Kalel S, Dev Sharma Z, Bansal R. MASLD- Global prevalence, pathophysiological processes and management pathways- tackling a complex problem. Gastroenterol Hepatol Open access [Internet]. 2024 Jul 25;15(4):74–88. Available from: https://medcraveonline.com/GHOA/masld--global-prevalence-pathophysiological-processes-and-management-pathways--tackling-a-complex-problem.html. doi: https://doi.org/10.15406/ghoa.2024.15.00585
  10. DiStefano JK. NAFLD and NASH in Postmenopausal Women: Implications for Diagnosis and Treatment. Endocrinology [Internet]. 2020 Oct 1;161(10). Available from: https://academic.oup.com/endo/article/doi/10.1210/endocr/bqaa134/5890353. doi: https://doi.org/10.1210/endocr/bqaa134
  11. Hashimoto E, Tokushige K. Prevalence, gender, ethnic variations, and prognosis of NASH. J Gastroenterol [Internet]. 2011 Jan 16;46(S1):63–9. Available from: http://link.springer.com/10.1007/s00535-010-0311-8. doi: 10.1007/s00535-010-0311-8
  12. Cao L, An Y, Liu H, Jiang J, Liu W, Zhou Y, et al. Global epidemiology of type 2 diabetes in patients with NAFLD or MAFLD: a systematic review and meta-analysis. BMC Med [Internet]. 2024 Mar 6;22(1):101. Available from: https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-024-03315-0. doi: https://doi.org/10.1186/s12916-024-03315-0
  13. Mehta R, Jeiran K, Koenig AB, Otgonsuren M, Goodman Z, Baranova A, et al. The role of mitochondrial genomics in patients with non-alcoholic steatohepatitis (NASH). BMC Med Genet [Internet]. 2016 Dec 5;17(1):63. Available from: http://bmcmedgenet.biomedcentral.com/articles/10.1186/s12881-016-0324-0. DOI: 10.1186/s12881-016-0324-0
  14. Rich NE, Oji S, Mufti AR, Browning JD, Parikh ND, Odewole M, et al. Racial and Ethnic Disparities in Nonalcoholic Fatty Liver Disease Prevalence, Severity, and Outcomes in the United States: A Systematic Review and Meta-analysis. Clin Gastroenterol Hepatol [Internet]. 2018 Feb;16(2):198-210.e2. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1542356517311837. DOI: https://doi.org/10.1016/j.cgh.2017.09.041
  15. Kokkorakis M, Muzurović E, Volčanšek Š, Chakhtoura M, Hill MA, Mikhailidis DP, et al. Steatotic Liver Disease: Pathophysiology and Emerging Pharmacotherapies. Eid A, editor. Pharmacol Rev [Internet]. 2024 May;76(3):454–99. Available from: http://pharmrev.aspetjournals.org/lookup/doi/10.1124/pharmrev.123.001087. DOI: 10.1124/pharmrev.123.001087
  16. Barber TM, Hanson P, Weickert MO. Metabolic-Associated Fatty Liver Disease and the Gut Microbiota. Endocrinol Metab Clin North Am [Internet]. 2023 Sep;52(3):485–96. Available from: https://linkinghub.elsevier.com/retrieve/pii/S088985292300004X. DOI: 10.1016/j.ecl.2023.01.004
  17. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500(7464):541–6. Available from: doi: 10.1038/nature12506
  18. Leung H, Long X, Ni Y, Qian L, Nychas E, Siliceo SL, et al. Risk assessment with gut microbiome and metabolite markers in NAFLD development. Sci Transl Med [Internet]. 2022 Jun 8;14(648). Available from: https://www.science.org/doi/10.1126/scitranslmed.abk0855. DOI: 10.1126/scitranslmed.abk0855
  19. Almeida A, Nayfach S, Boland M, Strozzi F, Beracochea M, Shi ZJ, et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat Biotechnol [Internet]. 2021 Jan 20;39(1):105–14. Available from: https://www.nature.com/articles/s41587-020-0603-3.
  20. Wahlström A, Sayin SI, Marschall H-U, Bäckhed F. Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism. Cell Metab [Internet]. 2016 Jul;24(1):41–50. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1550413116302236. DOI: 10.1016/j.cmet.2016.05.005
  21. Canfora EE, Meex RCR, Venema K, Blaak EE. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat Rev Endocrinol [Internet]. 2019 May 22;15(5):261–73. Available from: https://www.nature.com/articles/s41574-019-0156-z. DOI: 10.1038/s41574-019-0156-z
  22. Zhou L, Yu D, Zheng S, Ouyang R, Wang Y, Xu G. Gut microbiota-related metabolome analysis based on chromatography-mass spectrometry. TrAC Trends Anal Chem [Internet]. 2021 Oct;143:116375. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0165993621001989. DOI: 10.1016/j.trac.2021.116375
  23. Montero‐Vallejo R, Maya‐Miles D, Ampuero J, Martín F, Romero‐Gómez M, Gallego‐Durán R. Novel insights into metabolic‐associated steatotic liver disease preclinical models. Liver Int [Internet]. 2024 Mar 30;44(3):644–62. Available from: https://onlinelibrary.wiley.com/doi/10.1111/liv.15830
  24. Singh RK, Chang H-W, Yan D, Lee KM, Ucmak D, Wong K, et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med [Internet]. 2017 Dec 8;15(1):73. Available from: https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-017-1175-y.
  25. Martin-Grau M, Monleón D. The Role of Microbiota-Related Co-Metabolites in MASLD Progression: A Narrative Review. Curr Issues Mol Biol [Internet]. 2024 Jun 25;46(7):6377–89. Available from: https://www.mdpi.com/1467-3045/46/7/381.
  26. Carlsson B, Lindén D, Brolén G, Liljeblad M, Bjursell M, Romeo S, et al. Review article: the emerging role of genetics in precision medicine for patients with non‐alcoholic steatohepatitis. Aliment Pharmacol Ther [Internet]. 2020 Jun 7;51(12):1305–20. Available from: https://onlinelibrary.wiley.com/doi/10.1111/apt.15738
  27. Li J, Zou B, Yeo YH, Feng Y, Xie X, Lee DH, et al. Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999–2019: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol [Internet]. 2019 May;4(5):389–98. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2468125319300391. doi: 10.1016/S2468-1253(19)30039-1
  28. Zhou F, Zhou J, Wang W, Zhang X, Ji Y, Zhang P, et al. Unexpected Rapid Increase in the Burden of NAFLD in China From 2008 to 2018: A Systematic Review and Meta‐Analysis. Hepatology [Internet]. 2019 Oct 8;70(4):1119–33. Available from: https://journals.lww.com/ 10.1002/hep.30702. doi: 10.1002/hep.30702
  29. Li J, Zou B, Yeo YH, Feng Y, Xie X, Lee DH, et al. Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999-2019: a systematic review and meta-analysis. lancet Gastroenterol Hepatol. 2019 May;4(5):389–98. doi: 10.1016/S2468-1253(19)30039-1
  30. Ahmed MH, Noor SK, Bushara SO, Husain NE, Elmadhoun WM, Ginawi IA, et al. Non-Alcoholic Fatty Liver Disease in Africa and Middle East: An Attempt to Predict the Present and Future Implications on the Healthcare System. Gastroenterol Res [Internet]. 2017;10(5):271–9. Available from: http://www.gastrores.org/index.php/Gastrores/article/view/913. doi: 10.14740/gr913w
  31. Kalligeros M, Vassilopoulos A, Shehadeh F, Vassilopoulos S, Lazaridou I, Mylonakis E, et al. Prevalence and Characteristics of Nonalcoholic Fatty Liver Disease and Fibrosis in People Living With HIV Monoinfection: A Systematic Review and Meta-analysis. Clin Gastroenterol Hepatol [Internet]. 2023 Jul;21(7):1708–22. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1542356523000289. doi: 10.1016/j.cgh.2023.01.001
  32. Lee BP, Dodge JL, Terrault NA. National prevalence estimates for steatotic liver disease and subclassifications using consensus nomenclature. Hepatology [Internet]. 2024 Mar;79(3):666–73. Available from: https://journals.lww.com/10.1097/HEP.0000000000000604
  33. Díaz LA, Ayares G, Arnold J, Idalsoaga F, Corsi O, Arrese M, et al. Liver Diseases in Latin America: Current Status, Unmet Needs, and Opportunities for Improvement. Curr Treat Options Gastroenterol [Internet]. 2022 Jun 16;20(3):261–78. Available from: https://link.springer.com/10.1007/s11938-022-00382-1
  34. Francque SM, Marchesini G, Kautz A, Walmsley M, Dorner R, Lazarus J V., et al. Non-alcoholic fatty liver disease: A patient guideline. JHEP Reports [Internet]. 2021 Oct;3(5):100322. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2589555921000987
  35. Cusi K, Isaacs S, Barb D, Basu R, Caprio S, Garvey WT, et al. American Association of Clinical Endocrinology Clinical Practice Guideline for the Diagnosis and Management of Nonalcoholic Fatty Liver Disease in Primary Care and Endocrinology Clinical Settings. Endocr Pract [Internet]. 2022 May;28(5):528–62. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1530891X22000908. doi: 10.1016/j.eprac.2022.03.010
  36. Wong RJ. Epidemiology of metabolic dysfunction-associated steatotic liver disease (MASLD) and alcohol-related liver disease (ALD). Metab Target Organ Damage [Internet]. 2024 Sep 30; Available from: https://www.oaepublish.com/articles/mtod.2024.57.
  37. Quek J, Chan KE, Wong ZY, Tan C, Tan B, Lim WH, et al. Global prevalence of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in the overweight and obese population: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol [Internet]. 2023 Jan;8(1):20–30. Available from: https://linkinghub.elsevier.com/retrieve/pii/S246812532200317X. doi: 10.1016/S2468-1253(22)00317-X
  38. Chan W-K, Chuah K-H, Rajaram RB, Lim L-L, Ratnasingam J, Vethakkan SR. Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): A State-of-the-Art Review. J Obes Metab Syndr [Internet]. 2023 Sep 30;32(3):197–213. Available from: http://www.jomes.org/journal/view.html?doi=10.7570/jomes23052
  39. Ferenc K, Jarmakiewicz-Czaja S, Sokal-Dembowska A, Stasik K, Filip R. Common Denominator of MASLD and Some Non-Communicable Diseases. Curr Issues Mol Biol [Internet]. 2024 Jun 29;46(7):6690–709. Available from: https://www.mdpi.com/1467-3045/46/7/399.
  40. Flessa C-M, Nasiri-Ansari N, Kyrou I, Leca BM, Lianou M, Chatzigeorgiou A, et al. Genetic and Diet-Induced Animal Models for Non-Alcoholic Fatty Liver Disease (NAFLD) Research. Int J Mol Sci [Internet]. 2022 Dec 13;23(24):15791. Available from: https://www.mdpi.com/1422-0067/23/24/15791. doi: 10.3390/ijms232415791
  41. Velázquez KT, Enos RT, Bader JE, Sougiannis AT, Carson MS, Chatzistamou I, et al. Prolonged high-fat-diet feeding promotes non-alcoholic fatty liver disease and alters gut microbiota in mice. World J Hepatol [Internet]. 2019 Aug 27;11(8):619–37. Available from: https://www.wjgnet.com/1948-5182/full/v11/i8/619.htm. doi: 10.4254/wjh.v11.i8.619
  42. Dobbie LJ, Burgess J, Hamid A, Nevitt SJ, Hydes TJ, Alam U, et al. Effect of a Low-Calorie Dietary Intervention on Liver Health and Body Weight in Adults with Metabolic-Dysfunction Associated Steatotic Liver Disease (MASLD) and Overweight/Obesity: A Systematic Review and Meta-Analysis. Nutrients [Internet]. 2024 Apr 1;16(7):1030. Available from: https://www.mdpi.com/2072-6643/16/7/1030.
  43. De Nucci S, Bonfiglio C, Donvito R, Di Chito M, Cerabino N, Rinaldi R, et al. Effects of an Eight Week Very Low-Calorie Ketogenic Diet (VLCKD) on White Blood Cell and Platelet Counts in Relation to Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) in Subjects with Overweight and Obesity. Nutrients [Internet]. 2023 Oct 21;15(20):4468. Available from: https://www.mdpi.com/2072-6643/15/20/4468. doi: 10.3390/nu15204468
  44. Jung S, Bae H, Song W-S, Jang C. Dietary Fructose and Fructose-Induced Pathologies. Annu Rev Nutr [Internet]. 2022 Aug 22;42(1):45–66. Available from: https://www.annualreviews.org/doi/10.1146/annurev-nutr-062220-025831. doi: 10.1146/annurev-nutr-062220-025831
  45. Shapiro A, Mu W, Roncal C, Cheng K-Y, Johnson RJ, Scarpace PJ. Fructose-induced leptin resistance exacerbates weight gain in response to subsequent high-fat feeding. Am J Physiol Integr Comp Physiol [Internet]. 2008 Nov;295(5):R1370–5. Available from: https://www.physiology.org/doi/10.1152/ajpregu.00195.2008. doi: 10.1152/ajpregu.00195.2008
  46. Shapiro A, Tümer N, Gao Y, Cheng K-Y, Scarpace PJ. Prevention and reversal of diet-induced leptin resistance with a sugar-free diet despite high fat content. Br J Nutr [Internet]. 2011 Aug 14;106(3):390–7. Available from: https://www.cambridge.org/core/product/identifier/S000711451100033X/type/journal_article. doi: 10.1017/S000711451100033X
  47. Muriel P, López-Sánchez P, Ramos-Tovar E. Fructose and the Liver. Int J Mol Sci [Internet]. 2021 Jun 28;22(13):6969. Available from: https://www.mdpi.com/1422-0067/22/13/6969.
  48. Jegatheesan P, De Bandt J. Fructose and NAFLD: The Multifaceted Aspects of Fructose Metabolism. Nutrients [Internet]. 2017 Mar 3;9(3):230. Available from: https://www.mdpi.com/2072-6643/9/3/230.
  49. Ter Horst K, Serlie M. Fructose Consumption, Lipogenesis, and Non-Alcoholic Fatty Liver Disease. Nutrients [Internet]. 2017 Sep 6;9(9):981. Available from: https://www.mdpi.com/2072-6643/9/9/981. doi: 10.3390/nu9090981
  50. DiStefano JK. Fructose-mediated effects on gene expression and epigenetic mechanisms associated with NAFLD pathogenesis. Cell Mol Life Sci [Internet]. 2020 Jun 23;77(11):2079–90. Available from: http://link.springer.com/10.1007/s00018-019-03390-0. doi: 10.1007/s00018-019-03390-0
  51. Romero-Gómez M, Zelber-Sagi S, Trenell M. Treatment of NAFLD with diet, physical activity and exercise. J Hepatol [Internet]. 2017 Oct;67(4):829–46. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0168827817320524. doi: 10.1016/j.jhep.2017.05.016
  52. Semmler G, Datz C, Reiberger T, Trauner M. Diet and exercise in NAFLD/NASH: Beyond the obvious. Liver Int [Internet]. 2021 Oct 21;41(10):2249–68. Available from: https://onlinelibrary.wiley.com/doi/10.1111/liv.15024
  53. Gao Y, Zhang W, Zeng L-Q, Bai H, Li J, Zhou J, et al. Exercise and dietary intervention ameliorate high-fat diet-induced NAFLD and liver aging by inducing lipophagy. Redox Biol [Internet]. 2020 Sep;36:101635. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2213231720308405. doi: 10.1016/j.redox.2020.101635
  54. Heredia NI, Zhang X, Balakrishnan M, Daniel CR, Hwang JP, McNeill LH, et al. Physical activity and diet quality in relation to non-alcoholic fatty liver disease: A cross-sectional study in a representative sample of U.S. adults using NHANES 2017–2018. Prev Med (Baltim) [Internet]. 2022 Jan;154:106903. Available from: https://linkinghub.elsevier.com/retrieve/pii/S009174352100476X. 10.1016/j.ypmed.2021.106903
  55. Rong L, Zou J, Ran W, Qi X, Chen Y, Cui H, et al. Advancements in the treatment of non-alcoholic fatty liver disease (NAFLD). Front Endocrinol (Lausanne) [Internet]. 2023 Jan 16;13. Available from: https://www.frontiersin.org/articles/10.3389/fendo.2022.1087260/full. doi: 10.3389/fendo.2022.1087260
  56. Portincasa P, Bonfrate L, Khalil M, Angelis M De, Calabrese FM, D’Amato M, et al. Intestinal Barrier and Permeability in Health, Obesity and NAFLD. Biomedicines [Internet]. 2021 Dec 31;10(1):83. Available from: https://www.mdpi.com/2227-9059/10/1/83. doi: 10.3390/biomedicines10010083
  57. Jayachandran M, Qu S. Non-alcoholic fatty liver disease and gut microbial dysbiosis- underlying mechanisms and gut microbiota mediated treatment strategies. Rev Endocr Metab Disord [Internet]. 2023 Dec 16;24(6):1189–204. Available from: https://link.springer.com/10.1007/s11154-023-09843-z
  58. Li R, Mao Z, Ye X, Zuo T. Human Gut Microbiome and Liver Diseases: From Correlation to Causation. Microorganisms [Internet]. 2021 May 8;9(5):1017. Available from: https://www.mdpi.com/2076-2607/9/5/1017.
  59. Chen J, Vitetta L. Gut microbiota metabolites in nafld pathogenesis and therapeutic implications. Int J Mol Sci [Internet]. 2020;21(15):1–19. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088812055&doi=10.3390%2Fijms21155214&partnerID=40&md5=63f19a742bc0c2f43599e864e12ab101. doi: 10.3390/ijms21155214
  60. Zhang X, Coker OO, Chu ES, Fu K, Lau HCH, Wang Y-X, et al. Dietary cholesterol drives fatty liver-associated liver cancer by modulating gut microbiota and metabolites. Gut [Internet]. 2021 Apr;70(4):761–74. Available from: https://gut.bmj.com/lookup/doi/10.1136/gutjnl-2019-319664
  61. Tilg H, Adolph TE, Trauner M. Gut-liver axis: Pathophysiological concepts and clinical implications. Cell Metab [Internet]. 2022 Nov;34(11):1700–18. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1550413122004077. doi: 10.1016/j.cmet.2022.09.017
  62. Ji Y, Yin Y, Li Z, Zhang W. Gut Microbiota-Derived Components and Metabolites in the Progression of Non-Alcoholic Fatty Liver Disease (NAFLD). Nutrients [Internet]. 2019 Jul 25;11(8):1712. Available from: https://www.mdpi.com/2072-6643/11/8/1712. doi: 10.3390/nu11081712
  63. Fang J, Yu C-H, Li X-J, Yao J-M, Fang Z-Y, Yoon S-H, et al. Gut dysbiosis in nonalcoholic fatty liver disease: pathogenesis, diagnosis, and therapeutic implications. Front Cell Infect Microbiol [Internet]. 2022 Nov 8;12. Available from: https://www.frontiersin.org/articles/10.3389/fcimb.2022.997018/full. doi: 10.3389/fcimb.2022.997018
  64. Da Silva HE, Teterina A, Comelli EM, Taibi A, Arendt BM, Fischer SE, et al. Nonalcoholic fatty liver disease is associated with dysbiosis independent of body mass index and insulin resistance. Sci Rep [Internet]. 2018 Jan 23;8(1):1466. Available from: https://www.nature.com/articles/s41598-018-19753-9. doi: 10.1038/s41598-018-19753-9
  65. Demir M, Lang S, Hartmann P, Duan Y, Martin A, Miyamoto Y, et al. The fecal mycobiome in non-alcoholic fatty liver disease. J Hepatol [Internet]. 2022 Apr;76(4):788–99. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0168827821022388. doi: 10.1016/j.jhep.2021.11.029
  66. Pasolli E, Asnicar F, Manara S, Zolfo M, Karcher N, Armanini F, et al. Extensive Unexplored Human Microbiome Diversity Revealed by Over 150,000 Genomes from Metagenomes Spanning Age, Geography, and Lifestyle. Cell [Internet]. 2019 Jan;176(3):649-662.e20. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0092867419300017. doi: 10.1016/j.cell.2019.01.001
  67. Li F, Ye J, Shao C, Zhong B. Compositional alterations of gut microbiota in nonalcoholic fatty liver disease patients: a systematic review and Meta-analysis. Lipids Health Dis [Internet]. 2021 Dec 26;20(1):22. Available from: https://lipidworld.biomedcentral.com/articles/10.1186/s12944-021-01440-w. doi: 10.1186/s12944-021-01440-w
  68. Shen F, Zheng R-D, Sun X-Q, Ding W-J, Wang X-Y, Fan J-G. Gut microbiota dysbiosis in patients with non-alcoholic fatty liver disease. Hepatobiliary Pancreat Dis Int [Internet]. 2017;16(4):375–81. Available from: https://www.sciencedirect.com/science/article/pii/S1499387217600195. doi: 10.1016/S1499-3872(17)60019-5
  69. Oh JH, Lee JH, Cho MS, Kim H, Chun J, Lee JH, et al. Characterization of Gut Microbiome in Korean Patients with Metabolic Associated Fatty Liver Disease. Nutrients [Internet]. 2021 Mar 21;13(3):1013. Available from: https://www.mdpi.com/2072-6643/13/3/1013. doi: 10.3390/nu13031013
  70. Iino C, Endo T, Mikami K, Hasegawa T, Kimura M, Sawada N, et al. Significant decrease in Faecalibacterium among gut microbiota in nonalcoholic fatty liver disease: a large BMI- and sex-matched population study. Hepatol Int [Internet]. 2019;13(6):748–56. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073801708&doi=10.1007%2Fs12072-019-09987-8&partnerID=40&md5=a8c1cfa2fbf5165928ba8535dbc03489.
  71. Kovatcheva-Datchary P, Nilsson A, Akrami R, Lee YS, De Vadder F, Arora T, et al. Dietary Fiber-Induced Improvement in Glucose Metabolism Is Associated with Increased Abundance of Prevotella. Cell Metab [Internet]. 2015 Dec;22(6):971–82. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1550413115005173. doi: 10.1016/j.cmet.2015.10.001
  72. Nava GM, Stappenbeck TS. Diversity of the autochthonous colonic microbiota. Gut Microbes [Internet]. 2011 Mar 28;2(2):99–104. Available from: http://www.tandfonline.com/doi/abs/10.4161/gmic.2.2.15416. doi: 10.4161/gmic.2.2.15416
  73. Schwimmer JB, Johnson JS, Angeles JE, Behling C, Belt PH, Borecki I, et al. Microbiome Signatures Associated With Steatohepatitis and Moderate to Severe Fibrosis in Children With Nonalcoholic Fatty Liver Disease. Gastroenterology [Internet]. 2019 Oct;157(4):1109–22. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0016508519410378. doi: 10.1053/j.gastro.2019.06.028
  74. Woestemeier A, Scognamiglio P, Zhao Y, Wagner J, Muscate F, Casar C, et al. Multicytokine-producing CD4+ T cells characterize the livers of patients with NASH. JCI Insight [Internet]. 2023 Jan 10;8(1). Available from: https://insight.jci.org/articles/view/153831. doi: 10.1172/jci.insight.153831
  75. Ding G, Yang X, Li Y, Wang Y, Du Y, Wang M, et al. Gut microbiota regulates gut homeostasis, mucosal immunity and influences immune-related diseases. Mol Cell Biochem [Internet]. 2024 Jul 26; Available from: https://link.springer.com/10.1007/s11010-024-05077-y. doi: 10.1007/s11010-024-05077-y
  76. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature [Internet]. 2012 Jun 9;486(7402):222–7. Available from: https://www.nature.com/articles/nature11053. doi: 10.1038/nature11053
  77. Lee G, You HJ, Bajaj JS, Joo SK, Yu J, Park S, et al. Distinct signatures of gut microbiome and metabolites associated with significant fibrosis in non-obese NAFLD. Nat Commun [Internet]. 2020 Oct 5;11(1):4982. Available from: https://www.nature.com/articles/s41467-020-18754-5. doi: 10.1038/s41467-020-18754-5
  78. Ghosh S, Whitley CS, Haribabu B, Jala VR. Regulation of Intestinal Barrier Function by Microbial Metabolites. Cell Mol Gastroenterol Hepatol [Internet]. 2021;11(5):1463–82. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2352345X21000400. doi: 10.1016/j.jcmgh.2021.02.007
  79. Cruz N, Abernathy GA, Dichosa AEK, Kumar A. The Age of Next-Generation Therapeutic-Microbe Discovery: Exploiting Microbe-Microbe and Host-Microbe Interactions for Disease Prevention. Ottemann KM, editor. Infect Immun [Internet]. 2022 May 19;90(5). Available from: https://journals.asm.org/doi/10.1128/iai.00589-21
  80. Yuan H, Jung E-S, Chae S-W, Jung S-J, Daily JW, Park S. Biomarkers for Health Functional Foods in Metabolic Dysfunction-Associated Steatotic Liver Disorder (MASLD) Prevention: An Integrative Analysis of Network Pharmacology, Gut Microbiota, and Multi-Omics. Nutrients [Internet]. 2024 Sep 11;16(18):3061. Available from: https://www.mdpi.com/2072-6643/16/18/3061.
  81. Schönfeld P, Wojtczak L. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective. J Lipid Res [Internet]. 2016 Jun;57(6):943–54. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022227520351737. doi: 10.1194/jlr.R067629
  82. Yu JS, Youn GS, Choi J, Kim C, Kim BY, Yang S, et al. Lactobacillus lactis and Pediococcus pentosaceus ‐driven reprogramming of gut microbiome and metabolome ameliorates the progression of non‐alcoholic fatty liver disease. Clin Transl Med [Internet]. 2021 Dec 29;11(12). Available from: https://onlinelibrary.wiley.com/doi/10.1002/ctm2.634
  83. Leung C, Rivera L, Furness JB, Angus PW. The role of the gut microbiota in NAFLD. Nat Rev Gastroenterol Hepatol [Internet]. 2016 Jul 8;13(7):412–25. Available from: https://www.nature.com/articles/nrgastro.2016.85. doi: 10.1038/nrgastro.2016.85
  84. Tilg H, Cani PD, Mayer EA. Gut microbiome and liver diseases. Gut [Internet]. 2016 Dec;65(12):2035–44. Available from: https://gut.bmj.com/lookup/doi/10.1136/gutjnl-2016-312729
  85. Kaiko GE, Ryu SH, Koues OI, Collins PL, Solnica-Krezel L, Pearce EJ, et al. The Colonic Crypt Protects Stem Cells from Microbiota-Derived Metabolites. Cell [Internet]. 2016 Jun;165(7):1708–20. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0092867416305669. doi: 10.1016/j.cell.2016.05.018
  86. Carretta MD, Quiroga J, López R, Hidalgo MA, Burgos RA. Participation of Short-Chain Fatty Acids and Their Receptors in Gut Inflammation and Colon Cancer. Front Physiol [Internet]. 2021 Apr 8;12. Available from: https://www.frontiersin.org/articles/10.3389/fphys.2021.662739/full. doi: 10.3389/fphys.2021.662739
  87. Ang Z, Ding JL. GPR41 and GPR43 in Obesity and Inflammation – Protective or Causative? Front Immunol [Internet]. 2016 Feb 1;7. Available from: http://journal.frontiersin.org/article/10.3389/fimmu.2016.00028. doi: 10.3389/fimmu.2016.00028
  88. Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol [Internet]. 2016 Jun 27;16(6):341–52. Available from: https://www.nature.com/articles/nri.2016.42.
  89. Zhang Y, Zhan L, Zhang L, Shi Q, Li L. Branched-Chain Amino Acids in Liver Diseases: Complexity and Controversy. Nutrients [Internet]. 2024 Jun 14;16(12):1875. Available from: https://www.mdpi.com/2072-6643/16/12/1875.
  90. Neinast M, Murashige D, Arany Z. Branched Chain Amino Acids. Annu Rev Physiol [Internet]. 2019 Feb 10;81(1):139–64. Available from: https://www.annualreviews.org/doi/10.1146/annurev-physiol-020518-114455. doi: 10.1146/annurev-physiol-020518-114455
  91. Everman S, Mandarino LJ, Carroll CC, Katsanos CS. Effects of Acute Exposure to Increased Plasma Branched-Chain Amino Acid Concentrations on Insulin-Mediated Plasma Glucose Turnover in Healthy Young Subjects. Moro C, editor. PLoS One [Internet]. 2015 Mar 17;10(3):e0120049. Available from: https://doi.org/10.1371/journal.pone.0120049
  92. Shimobayashi M, Hall MN. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol [Internet]. 2014 Mar 21;15(3):155–62. Available from: https://www.nature.com/articles/nrm3757. doi: 10.1038/nrm3757
  93. Laplante M, Sabatini DM. mTOR Signaling in Growth Control and Disease. Cell [Internet]. 2012 Apr;149(2):274–93. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0092867412003510. doi: 10.1016/j.cell.2012.03.017
  94. Hagiwara A, Nishiyama M, Ishizaki S. Branched‐chain amino acids prevent insulin‐induced hepatic tumor cell proliferation by inducing apoptosis through mTORC1 and mTORC2‐dependent mechanisms. J Cell Physiol [Internet]. 2012 May 23;227(5):2097–105. Available from: https://onlinelibrary.wiley.com/doi/10.1002/jcp.22941
  95. Lee CC, Watkins SM, Lorenzo C, Wagenknecht LE, Il’yasova D, Chen Y-DI, et al. Branched-Chain Amino Acids and Insulin Metabolism: The Insulin Resistance Atherosclerosis Study (IRAS). Diabetes Care [Internet]. 2016 Apr 1;39(4):582–8. Available from: https://diabetesjournals.org/care/article/39/4/582/29089/Branched-Chain-Amino-Acids-and-Insulin-Metabolism. doi: 10.2337/dc15-2284
  96. Gaggini M, Carli F, Rosso C, Buzzigoli E, Marietti M, Della Latta V, et al. Altered amino acid concentrations in NAFLD: Impact of obesity and insulin resistance. Hepatology [Internet]. 2018 Jan 17;67(1):145–58. Available from: https://journals.lww.com/01515467-201801000-00018. doi: 10.1002/hep.29465
  97. Lischka J, Schanzer A, Hojreh A, Ba Ssalamah A, Item CB, de Gier C, et al. A branched‐chain amino acid‐based metabolic score can predict liver fat in children and adolescents with severe obesity. Pediatr Obes [Internet]. 2021 Apr 14;16(4). Available from: https://onlinelibrary.wiley.com/doi/10.1111/ijpo.12739
  98. van den Berg EH, Flores-Guerrero JL, Gruppen EG, de Borst MH, Wolak-Dinsmore J, Connelly MA, et al. Non-Alcoholic Fatty Liver Disease and Risk of Incident Type 2 Diabetes: Role of Circulating Branched-Chain Amino Acids. Nutrients [Internet]. 2019 Mar 26;11(3):705. Available from: https://www.mdpi.com/2072-6643/11/3/705. doi: 10.3390/nu11030705
  99. Vallianou NG, Kounatidis D, Psallida S, Vythoulkas-Biotis N, Adamou A, Zachariadou T, et al. NAFLD/MASLD and the Gut–Liver Axis: From Pathogenesis to Treatment Options. Metabolites [Internet]. 2024 Jun 28;14(7):366. Available from: https://www.mdpi.com/2218-1989/14/7/366. doi: 10.3390/metabo14070366
  100. Benedé-Ubieto R, Cubero FJ, Nevzorova YA. Breaking the barriers: the role of gut homeostasis in Metabolic-Associated Steatotic Liver Disease (MASLD). Gut Microbes [Internet]. 2024 Dec 31;16(1). Available from: https://www.tandfonline.com/doi/full/10.1080/19490976.2024.2331460
  101. Mori H, Svegliati Baroni G, Marzioni M, Di Nicola F, Santori P, Maroni L, et al. Farnesoid X Receptor, Bile Acid Metabolism, and Gut Microbiota. Metabolites [Internet]. 2022 Jul 14;12(7):647. Available from: https://www.mdpi.com/2218-1989/12/7/647. doi: 10.3390/metabo12070647
  102. Lang S, Demir M, Martin A, Jiang L, Zhang X, Duan Y, et al. Intestinal Virome Signature Associated With Severity of Nonalcoholic Fatty Liver Disease. Gastroenterology [Internet]. 2020 Nov;159(5):1839–52. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0016508520349234. doi: 10.1053/j.gastro.2020.07.005
  103. Moon A-N, Briand F, Breyner N, Song D-K, Madsen MR, Kim H, et al. Improvement of NASH and liver fibrosis through modulation of the gut-liver axis by a novel intestinal FXR agonist. Biomed Pharmacother [Internet]. 2024 Apr;173:116331. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0753332224002154. doi: 10.1016/j.biopha.2024.116331
  104. Mörbe UM, Jørgensen PB, Fenton TM, von Burg N, Riis LB, Spencer J, et al. Human gut-associated lymphoid tissues (GALT); diversity, structure, and function. Mucosal Immunol [Internet]. 2021 Jul;14(4):793–802. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1933021922001799. doi: 10.1038/s41385-021-00389-4
  105. Dmytriv TR, Storey KB, Lushchak VI. Intestinal barrier permeability: the influence of gut microbiota, nutrition, and exercise. Front Physiol [Internet]. 2024 Jul 8;15. Available from: https://www.frontiersin.org/articles/10.3389/fphys.2024.1380713/full.
  106. Mehedint MG, Zeisel SH. Cholineʼs role in maintaining liver function. Curr Opin Clin Nutr Metab Care [Internet]. 2013 May;16(3):339–45. Available from: http://journals.lww.com/00075197-201305000-00016. doi: 10.1097/MCO.0b013e3283600d46
  107. Spencer MD, Hamp TJ, Reid RW, Fischer LM, Zeisel SH, Fodor AA. Association Between Composition of the Human Gastrointestinal Microbiome and Development of Fatty Liver With Choline Deficiency. Gastroenterology [Internet]. 2011 Mar;140(3):976–86. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0016508510017397. doi: 10.1053/j.gastro.2010.11.049
  108. Ma R, Shi G, Li Y, Shi H. Trimethylamine N-oxide, choline and its metabolites are associated with the risk of non-alcoholic fatty liver disease. Br J Nutr [Internet]. 2024 Jun 14;131(11):1915–23. Available from: https://www.cambridge.org/core/product/identifier/S0007114524000631/type/journal_article. doi: 10.1017/S0007114524000631
  109. Martínez‐Montoro JI, Núñez‐Sánchez MÁ, Martinez‐Sanchez MA, Balaguer‐Román A, Fernández‐Ruiz VE, Ferrer‐Gómez M, et al. Hepatic and serum branched‐chain fatty acid profile in patients with nonalcoholic fatty liver disease: A case–control study. Obesity [Internet]. 2023 Apr 6;31(4):1064–74. Available from: https://onlinelibrary.wiley.com/doi/10.1002/oby.23711
  110. Sui G, Jia L, Quan D, Zhao N, Yang G. Activation of the gut microbiota-kynurenine-liver axis contributes to the development of nonalcoholic hepatic steatosis in nondiabetic adults. Aging (Albany NY) [Internet]. 2021;13(17):21309–24. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85115625043&doi=10.18632%2Faging.203460&partnerID=40&md5=0dca7ea2366b0c4eff4d8c5b8586e856. doi: 10.18632/aging.203460
  111. Ding Y, Yanagi K, Cheng C, Alaniz RC, Lee K, Jayaraman A. Interactions between gut microbiota and non-alcoholic liver disease: The role of microbiota-derived metabolites. Pharmacol Res [Internet]. 2019 Mar;141:521–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S104366181832098X. doi: 10.1016/j.phrs.2019.01.029
  112. Tang R, Li L. Modulation of Short-Chain Fatty Acids as Potential Therapy Method for Type 2 Diabetes Mellitus. Huang M-H, editor. Can J Infect Dis Med Microbiol [Internet]. 2021 Jan 4;2021:1–13. Available from: https://www.hindawi.com/journals/cjidmm/2021/6632266/. doi: 10.1155/2021/6632266
  113. Sun S, Araki Y, Hanzawa F, Umeki M, Kojima T, Nishimura N, et al. High sucrose diet-induced dysbiosis of gut microbiota promotes fatty liver and hyperlipidemia in rats. J Nutr Biochem [Internet]. 2021 Jul;93:108621. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0955286321000413. doi: 10.1016/j.jnutbio.2021.108621
  114. Khakisahneh S, Zhang X, Nouri Z, Wang D. Cecal microbial transplantation attenuates hyperthyroid‐induced thermogenesis in Mongolian gerbils. Microb Biotechnol [Internet]. 2022 Mar 17;15(3):817–31. Available from: https://sfamjournals.onlinelibrary.wiley.com/doi/10.1111/1751-7915.13793
  115. Guo C, Wang Y, Zhang S, Zhang X, Du Z, Li M, et al. Crataegus pinnatifida polysaccharide alleviates colitis via modulation of gut microbiota and SCFAs metabolism. Int J Biol Macromol [Internet]. 2021 Jun;181:357–68. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141813021006826. doi: 10.1016/j.ijbiomac.2021.03.137
  116. Qian X, Liu Y-X, Ye X, Zheng W, Lv S, Mo M, et al. Gut microbiota in children with juvenile idiopathic arthritis: characteristics, biomarker identification, and usefulness in clinical prediction. BMC Genomics [Internet]. 2020 Dec 7;21(1):286. Available from: https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-020-6703-0.
  117. Liu W, Luo X, Tang J, Mo Q, Zhong H, Zhang H, et al. A bridge for short-chain fatty acids to affect inflammatory bowel disease, type 1 diabetes, and non-alcoholic fatty liver disease positively: by changing gut barrier. Eur J Nutr [Internet]. 2021 Aug 12;60(5):2317–30. Available from: https://link.springer.com/10.1007/s00394-020-02431-w. doi: 10.1007/s00394-020-02431-w
  118. Wang B, Jiang X, Cao M, Ge J, Bao Q, Tang L, et al. Altered Fecal Microbiota Correlates with Liver Biochemistry in Nonobese Patients with Non-alcoholic Fatty Liver Disease. Sci Rep [Internet]. 2016 Aug 23;6(1):32002. Available from: https://www.nature.com/articles/srep32002.
  119. Wong JMW, de Souza R, Kendall CWC, Emam A, Jenkins DJA. Colonic Health: Fermentation and Short Chain Fatty Acids. J Clin Gastroenterol [Internet]. 2006 Mar;40(3):235–43. Available from: http://journals.lww.com/00004836-200603000-00015. doi: 10.1097/00004836-200603000-00015
  120. Schnabl B, Brenner DA. Interactions Between the Intestinal Microbiome and Liver Diseases. Gastroenterology [Internet]. 2014 May;146(6):1513–24. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0016508514000778. doi: 10.1053/j.gastro.2014.01.020
  121. Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature [Internet]. 2013 Jul 4;499(7456):97–101. Available from: https://www.nature.com/articles/nature12347. doi: 10.1038/nature12347
  122. Kakiyama G, Pandak WM, Gillevet PM, Hylemon PB, Heuman DM, Daita K, et al. Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. J Hepatol [Internet]. 2013 May;58(5):949–55. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0168827813000160. doi: 10.1016/j.jhep.2013.01.003
  123. Rau M, Rehman A, Dittrich M, Groen AK, Hermanns HM, Seyfried F, et al. Fecal SCFAs and SCFA‐producing bacteria in gut microbiome of human NAFLD as a putative link to systemic T‐cell activation and advanced disease. United Eur Gastroenterol J [Internet]. 2018 Dec;6(10):1496–507. Available from: https://onlinelibrary.wiley.com/doi/10.1177/2050640618804444
  124. Basson A, Trotter A, Rodriguez-Palacios A, Cominelli F. Mucosal Interactions between Genetics, Diet, and Microbiome in Inflammatory Bowel Disease. Front Immunol [Internet]. 2016 Aug 2;7. Available from: http://journal.frontiersin.org/Article/10.3389/fimmu.2016.00290/abstract.
  125. de la Cuesta-Zuluaga J, Mueller NT, Corrales-Agudelo V, Velásquez-Mejía EP, Carmona JA, Abad JM, et al. Metformin Is Associated With Higher Relative Abundance of Mucin-Degrading Akkermansia muciniphila and Several Short-Chain Fatty Acid–Producing Microbiota in the Gut. Diabetes Care [Internet]. 2017 Jan 1;40(1):54–62. Available from: https://diabetesjournals.org/care/article/40/1/54/37183/Metformin-Is-Associated-With-Higher-Relative. doi: 10.2337/dc16-1324
  126. Vital M, Howe AC, Tiedje JM. Revealing the Bacterial Butyrate Synthesis Pathways by Analyzing (Meta)genomic Data. Moran MA, editor. MBio [Internet]. 2014 May;5(2). Available from: https://journals.asm.org/doi/10.1128/mBio.00889-14
  127. Park J, Kim M, Kang SG, Jannasch AH, Cooper B, Patterson J, et al. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR–S6K pathway. Mucosal Immunol [Internet]. 2015 Jan;8(1):80–93. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1933021922008078.
  128. Kim MH, Kang SG, Park JH, Yanagisawa M, Kim CH. Short-Chain Fatty Acids Activate GPR41 and GPR43 on Intestinal Epithelial Cells to Promote Inflammatory Responses in Mice. Gastroenterology [Internet]. 2013 Aug;145(2):396-406.e10. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0016508513007087. doi: 10.1053/j.gastro.2013.04.056
  129. Thing M, Werge MP, Kimer N, Hetland LE, Rashu EB, Nabilou P, et al. Targeted metabolomics reveals plasma short-chain fatty acids are associated with metabolic dysfunction-associated steatotic liver disease. BMC Gastroenterol [Internet]. 2024 Jan 23;24(1):43. Available from: https://bmcgastroenterol.biomedcentral.com/articles/10.1186/s12876-024-03129-7. doi: 10.1186/s12876-024-03129-7
  130. Xiong J, Chen X, Zhao Z, Liao Y, Zhou T, Xiang Q. A potential link between plasma short‑chain fatty acids, TNF‑α level and disease progression in non‑alcoholic fatty liver disease: A retrospective study. Exp Ther Med [Internet]. 2022 Jul 28;24(3):598. Available from: http://www.spandidos-publications.com/10.3892/etm.2022.11536. doi: 10.3892/etm.2022.11536
  131. Aragonès G, Colom-Pellicer M, Aguilar C, Guiu-Jurado E, Martínez S, Sabench F, et al. Circulating microbiota-derived metabolites: a “liquid biopsy? Int J Obes [Internet]. 2020;44(4):875–85. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070259853&doi=10.1038%2Fs41366-019-0430-0&partnerID=40&md5=9eafa41ea17d2ca2eb8b06a97da716e6. doi: 10.1038/s41366-019-0430-0
  132. Rad ZA, Mousavi SN, Chiti H. A low-carb diet increases fecal short-chain fatty acids in feces of obese women following a weight-loss program: randomized feeding trial. Sci Rep [Internet]. 2023 Oct 24;13(1):18146. Available from: https://www.nature.com/articles/s41598-023-45054-x. doi: 10.1038/s41598-023-45054-x
  133. Vinelli V, Biscotti P, Martini D, Del Bo’ C, Marino M, Meroño T, et al. Effects of Dietary Fibers on Short-Chain Fatty Acids and Gut Microbiota Composition in Healthy Adults: A Systematic Review. Nutrients [Internet]. 2022 Jun 21;14(13):2559. Available from: https://www.mdpi.com/2072-6643/14/13/2559. doi: 10.3390/nu14132559
  134. Goffredo M, Santoro N, Tricò D, Giannini C, D’Adamo E, Zhao H, et al. A Branched-Chain Amino Acid-Related Metabolic Signature Characterizes Obese Adolescents with Non-Alcoholic Fatty Liver Disease. Nutrients [Internet]. 2017 Jun 22;9(7):642. Available from: https://www.mdpi.com/2072-6643/9/7/642. doi: 10.3390/nu9070642
  135. Grzych G, Vonghia L, Bout M-A, Weyler J, Verrijken A, Dirinck E, et al. Plasma BCAA Changes in Patients With NAFLD Are Sex Dependent. J Clin Endocrinol Metab [Internet]. 2020 Jul 1;105(7):2311–21. Available from: https://academic.oup.com/jcem/article/105/7/2311/5818376. doi: 10.1210/clinem/dgaa175
  136. Sarkar M, Wellons M, Cedars MI, VanWagner L, Gunderson EP, Ajmera V, et al. Testosterone Levels in Pre-Menopausal Women are Associated With Nonalcoholic Fatty Liver Disease in Midlife. Am J Gastroenterol [Internet]. 2017 May;112(5):755–62. Available from: https://journals.lww.com/00000434-201705000-00023. doi: 10.1038/ajg.2017.44
  137. Sarkar M, VanWagner LB, Terry JG, Carr JJ, Rinella M, Schreiner PJ, et al. Sex Hormone–Binding Globulin Levels in Young Men Are Associated With Nonalcoholic Fatty Liver Disease in Midlife. Am J Gastroenterol [Internet]. 2019 May 4;114(5):758–63. Available from: https://journals.lww.com/00000434-201905000-00016. doi: 10.14309/ajg.0000000000000138
  138. Zhang S, Zeng X, Ren M, Mao X, Qiao S. Novel metabolic and physiological functions of branched chain amino acids: a review. J Anim Sci Biotechnol [Internet]. 2017 Dec 23;8(1):10. Available from: http://jasbsci.biomedcentral.com/articles/10.1186/s40104-016-0139-z. doi: https://doi.org/10.1186/s40104-016-0139-z
  139. Lynch CJ, Adams SH. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat Rev Endocrinol [Internet]. 2014 Dec 7;10(12):723–36. Available from: https://www.nature.com/articles/nrendo.2014.171. doi: 10.1038/nrendo.2014.171

Last update:

No citation recorded.

Last update:

No citation recorded.