skip to main content

POTENSI SERANGGA SEBAGAI PANGAN FUNGSIONAL UNTUK PENINGKATAN KESEHATAN DAN KETAHANAN PANGAN DI INDONESIA: LITERATURE REVIEW

Magister Ilmu Gizi, Departemen Ilmu Gizi, Fakultas Kedokteran, Universitas Diponegoro, Semarang, Jawa Tengah, Indonesia

Received: 30 Jun 2024; Revised: 24 Sep 2024; Accepted: 24 Sep 2024; Available online: 22 Oct 2024; Published: 22 Oct 2024.

Citation Format:
Abstract

ABSTRACT

Background: Families in Indonesia still struggle with nutritional deficiencies. Since edible insects are readily available in nature in Indonesia and containing beneficial nutrients, they might be served as an alternate food and have health benefits.

Objectives: To analyze nutritional content of edible insect in Indonesia and related health benefits

Methods: This is a literature review that use articles published after 2012. The article search was done using three electronic databases (Google Scholar, PubMed, and ScienceDirect) using keywords such as edible insect, grasshopper, locust, sago worm, insect flour, insects and health, insects’ nutritional contents, protein, nutrition, and Indonesia. There are 10 studies included in the review

Results: Nutritional content of insects and its percentage varies depending on the species, level of individual development, sex, feed type, climate, and geographical location. Protein is the main content of insects. Some edible insects contain various amino acids, even Rhynchophorus bilineatus has complete set of essential amino acids. Fat is a large nutritional component found in insects after protein. Fatty acids content in most insects are predominantly unsaturated fatty acids. Insect consumption related with some health benefits such as decreased antioxidant and inflammation, increased probiotic bacteria, increased albumin and haemoglobin, and improved insulin-like growth hormone 1 (IGF-1).

Conclusion: Edible insects provide adequate protein and fat content. Furthermore, edible insects have the potential to become functional food and alternative food against malnutrition based on their health benefits

Keywords : edible insect; health benefit; Indonesia; nutrition

 

ABSTRAK

Latar belakang: Masyarakat Indonesia masih berjuang dengan masalah kekurangan gizi. Indonesia adalah habitat dari beragam serangga, banyak dari serangga ini dapat berfungsi sebagai makanan alternatif dan memiliki manfaat bagi kesehatan.

Tujuan: Menganalisis kandungan nutrisi serangga yang dapat dimakan di Indonesia dan manfaat kesehatan terkait.

Metode: Literature review menggunakan artikel yang diterbitkan setelah tahun 2012. Pencarian artikel dilakukan menggunakan tiga database elektronik (Google Scholar, PubMed, dan ScienceDirect) dengan menggunakan kata kunci edible insect, grasshopper, locust, sago worm, insect flour, protein, nutrition, health, dan Indonesia. Terdapat 10 penelitian yang diikutsertakan dalam review ini.

Hasil: Kandungan nutrisi serangga bervariasi tergantung pada spesies, tingkat perkembangan, jenis kelamin, jenis makanan, iklim, dan lokasi geografis. Protein merupakan kandungan utama serangga. Beberapa serangga yang dapat dimakan mengandung beragam asam amino, bahkan Rhynchophorus bilineatus memiliki asam amino esensial yang lengkap. Lemak merupakan komponen nutrisi terbesar yang ditemukan pada serangga setelah protein. Kandungan asam lemak pada sebagian besar serangga didominasi oleh asam lemak tak jenuh. Konsumsi serangga dikaitkan dengan beberapa manfaat kesehatan seperti penurunan antioksidan dan peradangan, peningkatan bakteri probiotik, peningkatan albumin dan hemoglobin, serta peningkatan insulin-like growth hormone 1 (IGF-1).

Simpulan: Serangga yang dapat dimakan memiliki kandungan protein dan lemak yang cukup. Selain itu, serangga ini berpotensi menjadi pangan fungsional dan pangan alternatif melawan malnutrisi berdasarkan manfaat kesehatan yang dimiliki.

Kata Kunci : serangga yang dapat dimakan; Indonesia; nutrisi; manfaat kesehatan

Fulltext View|Download
Keywords: serangga yang dapat dimakan; Indonesia; nutrisi; manfaat kesehatan

Article Metrics:

  1. Biró B, Sipos MA, Kovács A, Badak-Kerti K, Pásztor-Huszár K, Gere A. Cricket-Enriched Oat Biscuit: Technological Analysis and Sensory Evaluation. Foods. 2020;9(11):1561. doi: 10.3390/foods9111561
  2. Kuntadi K, Adalina Y, Maharani KE. Nutritional Compositions of Six Edible Insects in Java. Indones J For Res. 2018;5(1):57-68. doi: 10.20886/ijfr.2018.5.1.57-68
  3. Rah JH, Melse-Boonstra A, Agustina R, Van Zutphen KG, Kraemer K. The Triple Burden of Malnutrition Among Adolescents in Indonesia. Food Nutr Bull. 2021;42(1_suppl):S4-S8. doi: 10.1177/03795721211007114
  4. khoiriyah N, Anindita R, Hanani N, Muhaimin AW. Impact of Rising Food Prices on Demand and Poverty in Indonesia. Agric Socio-Econ J. 2020;20(1):67-78. doi: 10.21776/ub.agrise.2020.020.1.9
  5. Uauy R, Kurpad A, Tano-Debrah K, et al. Role of Protein and Amino Acids in Infant and Young Child Nutrition: Protein and Amino Acid Needs and Relationship with Child Growth. J Nutr Sci Vitaminol (Tokyo). 2015;61(Supplement):S192-S194. doi: 10.3177/jnsv.61.S192
  6. Ghosh S. Assessment of Protein Adequacy in Developing Countries: Quality Matters. Food Nutr Bull. 2013;34(2):244-246. doi: 10.1177/156482651303400217
  7. Briend A, Khara T, Dolan C. Wasting and Stunting—Similarities and Differences: Policy and Programmatic Implications. Food Nutr Bull. 2015;36(1_suppl1):S15-S23. doi: 10.1177/15648265150361S103
  8. Van Itterbeeck J, Pelozuelo L. How Many Edible Insect Species Are There? A Not So Simple Question. Diversity. 2022;14(2):143. doi: 10.3390/d14020143
  9. Jongema Y. List of Edible Insects of the World. Published online 2017. Accessed September 23, 2024. https://www.wur.nl/upload_mm/8/a/6/0fdfc700-3929-4a74-8b69-f02fd35a1696_Worldwide%20list%20of%20edible%20insects%202017.pdf
  10. Orkusz A. Edible Insects versus Meat—Nutritional Comparison: Knowledge of Their Composition Is the Key to Good Health. Nutrients. 2021;13(4):1207. doi: 10.3390/nu13041207
  11. Paulin IG, Purwanto MG. Nutritional Characteristics of Teak Grasshopper (Valanga nigricornis Burmeister), Cricket (Brachytrupes portentosus L.), and Mealworm (Tenebrio molitor) as Alternative Food Sources in Indonesia. Indones J Biotechnol Biodivers. 2020;4(1):52-61. doi: 10.47007/ijobb.v4i1.62
  12. Köhler R, Irias-Mata A, Ramandey E, Purwestri R, Biesalski HK. Nutrient composition of the Indonesian sago grub (Rhynchophorus bilineatus). Int J Trop Insect Sci. 2020;40(3):677-686. doi: 10.1007/s42690-020-00120-z
  13. Adámková A, Mlček J, Kouřimská L, et al. Nutritional Potential of Selected Insect Species Reared on the Island of Sumatra. Int J Environ Res Public Health. 2017;14(5):521. doi: 10.3390/ijerph14050521
  14. Nirmala IR, Trees null, Suwarni null, Pramono MS. Sago worms as a nutritious traditional and alternative food for rural children in Southeast Sulawesi, Indonesia. Asia Pac J Clin Nutr. 2017;26(Suppl 1):S40-S49
  15. Lestari LA, Gunawan WB. Sago Caterpillar (Rhynchophorus ferrugineus) Flour Improve Insulin-Like Growth Factor 1 (IGF-1) Levels in Low-Protein Diet Rats. J Aisyah J Ilmu Kesehat. 2022;7(S1):329-334. doi: 10.30604/jika.v7iS1.1300
  16. Lestari LA, Sulchan M, Legowo AM, Tjahjono K, Juniarto AZ. Efek tepung ulat sagu (Rhynchophorus ferrugineus) terhadap penurunan kadar malondialdehyde (MDA) pada tikus Wistar dengan diet rendah protein. AcTion Aceh Nutr J. 2021;6(2):139. doi: 10.30867/action.v6i2.537
  17. Ariani A, Anjani G, Sofro MAU, Djamiatun K. Tepung ulat sagu (Rhyinchophorus ferrugineus) imunomodulator Nitric Oxide (NO) sirkulasi mencit terapi antimalaria standar. J Gizi Indones Indones J Nutr. 2018;6(2):131-138. doi: 10.14710/jgi.6.2.131-138
  18. Oyay AF, Sofro MAU, Anjani G. Effect of Sago worm flour (Rhynchhorus feirugineus) on Albumin and Haemoglobin in Protein Energy Malnutrition (PEM) Wistar rats. Indones J Nutr Diet. 2021;9(2):77-84. doi: http://dx.doi.org/10.21927/ijnd.2021.9(2).77-84
  19. Stull VJ, Finer E, Bergmans RS, et al. Impact of Edible Cricket Consumption on Gut Microbiota in Healthy Adults, a Double-blind, Randomized Crossover Trial. Sci Rep. 2018;8(1):10762. doi: 10.1038/s41598-018-29032-2
  20. Aguilar-Toalá JE, Cruz-Monterrosa RG, Liceaga AM. Beyond Human Nutrition of Edible Insects: Health Benefits and Safety Aspects. Insects. 2022;13(11):1007. doi: 10.3390/insects13111007
  21. Seni A. Edible Insects: Future Prospects for Dietary Regimen. Int J Curr Microbiol Appl Sci. 2017;6(8):1302-1314. doi: 10.20546/ijcmas.2017.608.158
  22. Jantzen Da Silva Lucas A, Menegon De Oliveira L, Da Rocha M, Prentice C. Edible insects: An alternative of nutritional, functional and bioactive compounds. Food Chem. 2020;311:126022. doi: 10.1016/j.foodchem.2019.126022
  23. Rumpold BA, Schlüter OK. Nutritional composition and safety aspects of edible insects. Mol Nutr Food Res. 2013;57(5):802-823. doi: 10.1002/mnfr.201200735
  24. Ekpo KE, Onigbinde AO, Asia IO. Pharmaceutical potentials of the oils of some popular insects consumed in southern Nigeria. Afr J Pharm Pharmacol
  25. Paul A, Frederich M, Uyttenbroeck R, et al. Nutritional composition and rearing potential of the meadow grasshopper ( Chorthippus parallelus Zetterstedt). J Asia-Pac Entomol. 2016;19(4):1111-1116. doi: 10.1016/j.aspen.2016.09.012
  26. Tzompa-Sosa DA, Yi L, Van Valenberg HJF, Van Boekel MAJS, Lakemond CMM. Insect lipid profile: aqueous versus organic solvent-based extraction methods. Food Res Int. 2014;62:1087-1094. doi: 10.1016/j.foodres.2014.05.052
  27. Finke MD. Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biol. 2002;21(3):269-285. doi: 10.1002/zoo.10031
  28. Barroso FG, De Haro C, Sánchez-Muros MJ, Venegas E, Martínez-Sánchez A, Pérez-Bañón C. The potential of various insect species for use as food for fish. Aquaculture. 2014;422-423:193-201. doi: 10.1016/j.aquaculture.2013.12.024
  29. Bauserman M, Lokangaka A, Gado J, et al. A cluster-randomized trial determining the efficacy of caterpillar cereal as a locally available and sustainable complementary food to prevent stunting and anaemia. Public Health Nutr. 2015;18(10):1785-1792. doi: 10.1017/S1368980014003334
  30. Oonincx DGAB, Van Itterbeeck J, Heetkamp MJW, Van Den Brand H, Van Loon JJA, Van Huis A. An Exploration on Greenhouse Gas and Ammonia Production by Insect Species Suitable for Animal or Human Consumption. Hansen IA, ed. PLoS ONE. 2010;5(12):e14445. doi: 10.1371/journal.pone.0014445
  31. Belluco S, Losasso C, Maggioletti M, Alonzi CC, Paoletti MG, Ricci A. Edible Insects in a Food Safety and Nutritional Perspective: A Critical Review. Compr Rev Food Sci Food Saf. 2013;12(3):296-313. doi: 10.1111/1541-4337.12014
  32. Arrigo T. Role of the diet as a link between oxidative stress and liver diseases. World J Gastroenterol. 2015;21(2):384. doi: 10.3748/wjg.v21.i2.384
  33. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44-84. doi: 10.1016/j.biocel.2006.07.001
  34. Campos-Rodríguez R, Godínez-Victoria M, Abarca-Rojano E, et al. Stress modulates intestinal secretory immunoglobulin A. Front Integr Neurosci. 2013;7. doi: 10.3389/fnint.2013.00086
  35. Soeters PB, Wolfe RR, Shenkin A. Hypoalbuminemia: Pathogenesis and Clinical Significance. J Parenter Enter Nutr. 2019;43(2):181-193. doi: 10.1002/jpen.1451

Last update:

No citation recorded.

Last update:

No citation recorded.