skip to main content

APLIKASI NANO-SIZE LIPID CARRIER (NLC) MINYAK BEKATUL (RBO) PADA MINUMAN SARI BUAH APEL DAN JERUK KOMERSIAL

Departemen Teknologi Pangan dan Hasil Pertanian, Fakultas Teknologi Pertanian, Universitas Gadjah Mada, Indonesia

Received: 30 Oct 2023; Published: 23 Jan 2024.

Citation Format:
Abstract
ABSTRACT

Background: Rice bran oil contains high amounts of bioactive component compounds. This compound has activity as a natural antioxidant, especially α, β, γ, δ tocopherol and tocotrienol, as well as orizanol fraction. The properties of γ-orizanol as a fat-soluble antioxidant become a limitation when applied to liquid food or beverages. Therefore, a carrier system is needed to support γ-orizanol well dispersed in the beverage system. The lipid-based carrier system is divided into Solid Lipid Nanoparticles, Nanostructured Lipid Carrier and Nanoemulsion. In this study using NLC as a carrier system. such as high-pressure homogenization. Applications of nano-size lipid carriers (NLC) have been carried out on beverage model systems to study the utilization of NLC in simple beverage model systems and commercial beverage products.

Objectives: This study aims to determine the effect of nano-size lipid carrier (NLC) rice bran oil applied to commercial apple cider and orange juice beverage models

Methods: NLC produced with tween 80 as the lipid phase by 24%, then added aquabidest 70%, both mixtures as the aqueous phase. For the lipid phase using palm stearin and bran oil 6: 4. The mudian of the aqueous phase is 94% mixed with the lipid phase 6%. The best formula succeeded in making NLC bran oil that has nanoparticles. turbidity, zetapotency and pH are in accordance with the properties of NLC and can be applied to food products

Results : The addition of nanosized lipid carrier (NLC) rice bran oil in the model system for commercial apple cider and orange juice drinks had a significant effect (p ≤ 0.05) on the sensory characteristics. The rate of decrease in ascorbic acid during storage for apple juice with the addition of rice bran oil NLC and control was 0.0178 ppm/week and 0.0179 ppm/week, respectively. For orange juice with the addition of rice bran oil NLC and control respectively 0.0348 mg/mL/week and 0.037 mg/mL/week. Photooxidation had a significant effect on testing models of apple juice and orange juice drinks with control treatment and the addition of rice bran oil NLC and stored in a lighting box for 2 hours, having the line equation Y = - 0.8394x + 2055.3 (R2 = 0.9442) . The slope test results statistically show that under these conditions ascorbic acid degradation occurs at 0.84 ppm/minute. In the control apple cider and orange juice drink model system, the parameter a* (redness) decreased by 75% during the first 30 minutes of photooxidation.

Conclusion: Sensory evaluation of commercial apple juice and orange juice drinks containing rice bran oil NLC resulted in colors that were not significantly different but significantly different in aroma, taste and overall parameters. In proving the photooxidation of apple juice and orange juice drinks containing NLC rice bran oil, there was a decrease in ascorbic acid and an increase in the a* (redness) value.

Keywords : NLC, rice bran oil; sensory test; apple cider; orange juice


ABSTRAK

Latar belakang: Minyak bekatul padi mengandung senyawa komponen bioaktif dalam jumlah yang tinggi. Senyawa ini mempunyai aktivitas sebagai antioksidan alami, terutama α, β, γ, δ tokoferol dan tokotrienol, serta fraksi orizanol. Sifat γ-orizanol sebagai antioksidan larut lemak menjadi keterbatasan bila diaplikasikan pada bahan pangan cair atau minuman. Oleh karena itu, diperlukan suatu sistem pembawa agar γ-orizanol dapat terdispersi dengan baik dalam sistem minuman. Sistem pembawa berbasis lipid terbagi menjadi Solid Lipid Nanoparticles, Nanostructured Lipid Carrier dan nanoemulsi. Pada penelitian ini menggunakan nano-size lipid carrier ( NLC) sebagai sistem pembawa. seperti homogenisasi tekanan tinggi. Aplikasi nano-size lipid carrier (NLC) telah dilakukan pada sistem model minuman untuk mempelajari pemanfaatan NLC pada sistem model minuman sederhana dan produk minuman komersial.

Tujuan: Penelitian ini bertujuan untuk mengetahui pengaruh nano-size lipid carrier (NLC) minyak bekatul yang diaplikasikan pada model minuman sari apel dan sari jeruk komersial

Metode: Pembuatan NLC dengan tween 80 sebagai fase lipid sebesar 24% , kemudian ditambah aquabidest 70%, kedua campuran tersebut sebagai fase aqueous. Untuk fase lipidanya menggunakan palm stearin dan minyak bekatul 6 : 4, kemudian fase aqueous 94% dicampur dengan fase lipida 6%. Formula terbaik berhasil membuat NLC minyak bekatul yang memiliki nanopartikel. turbiditas, zetapotensial serta pH yang sesuai  dengan sifat-sifat NLC dan bisa diaplikasikan pada produk pangan

Hasil: Penambahan nanosize lipid carrier (NLC) minyak bekatul dalam sistem model minuman sari apel dan sari jeruk komersial berpengaruh signifikan (p ≤ 0,05)  terhadap karakteristik sensoris. Laju penurunan asam askorbat selama penyimpanan untuk sari apel dengan penambahan NLC minyak bekatul  dan kontrol secara berurutan 0,0178 ppm/minggu  dan 0,0179 ppm/minggu. Untuk sari jeruk  dengan penambahan NLC minyak bekatul dan kontrol secara berurutan 0,0348 mg/mL/minggu dan 0,037 mg/mL/minggu. Fotooksidasi berpengaruh signifikan  terhadap pengujian model minuman sari buah apel dan sari jeruk dengan perlakuan kontrol dan penambahan NLC minyak bekatul serta disimpan pada kotak pencahayaan selama 2 jam, memiliki persamaan garis Y = - 0,8394x + 2055,3 (R2 = 0,9442). Dari hasil pengujian slope secara statistik menunjukkan bahwa pada kondisi tersebut terjadi degradasi asam askorbat pada 0,84 ppm/menit. Pada sistem model minuman sari buah apel dan sari jeruk kontrol terjadi penurunan parameter nilai a*(redness) mencapai 75% selama fotooksidasi 30 menit pertama.

Simpulan: Evaluasi sensoris pada minuman sari apel dan sari jeruk komersial yang mengandung NLC minyak bekatul menghasilkan warna yang tidak berbeda nyata namun berbeda nyata pada parameter aroma, rasa, dan keseluruhan. Pada pembuktian fotooksidasi minuman sari apel dan sari jeruk yang mengandung NLC minyak bekatul terjadi penurunan asam askorbat, dan peningkatan nilai a*(redness)

Kata Kunci : NLC; minyak bekatul; sensoris; sari apel; sari jeruk

Fulltext View|Download
Keywords: NLC; minyak bekatul; sensoris; sari apel; sari jeruk

Article Metrics:

  1. Fathi, M., Mozafari, M. R., & Mohebbi, M. (2012). Nanoencapsulation of food ingredients using lipid based delivery systems. Trends in Food Science and Technology, 23(1), 13–27. https://doi.org/10.1016/j.tifs.2011.08
  2. Nagao, A., Kotake-Nara, E., & Hase, M. (2013). Effects of fats and oils on the bioaccessibility of carotenoids and vitamin e in vegetables. Bioscience, Biotechnology and Biochemistry, 77(5), 1055–1060. https://doi.org/10.1271/bbb.130025
  3. Mas’ud, F., & Pabbenteng, P. (2016). Rasio Bekatul Padi dengan Pelarut pada Ekstraksi Minyak Bekatul Padi. INTEK: Jurnal Penelitian, 3(2), 82. https://doi.org/10.31963/intek.v3i2.56World
  4. Sahini, M. G., & Mutegoa, E. (2023). Extraction, phytochemistry, nutritional, and therapeutical potentials of rice bran oil: A review. Phytomedicine Plus, 3(2), 100453. https://doi.org/10.1016/j.phyplu.2023
  5. McClements, D. J., & Rao, J. (2011). Food-Grade nanoemulsions: Formulation, fabrication, properties, performance, Biological fate, and Potential Toxicity. Critical Reviews in Food Science and Nutrition, 51(4), 285–330. https://doi.org/10.1080/10408398.2011.559558
  6. Ariviani, S., Raharjo, S., & Hastuti, P. (2011). Potensi mikroemulsi β -karoten dalam menghambat fotooksidasi vitamin C sistem aqueous [ The Potential Inhibition of Β -Carotene Microemulsion on Vitamin C Photooxidation in Aqueous Systems ]. Jurnal Teknologi Dan Industri Pangan, XXII(1), 33–39
  7. Azevedo, E. P. de P., dos Santos Alves, E. M., de Souza, J. R. B., de Araújo, K. S., de Santana Khan, S., Alves de Mendonça, C. E., & Maciel, M. I. S. (2021). Fatty acid in raw and heated coconut oil in eleven coconut oil food preparations analysed by gas chromatography. International Journal of Gastronomy and Food Science, 24(March). https://doi.org/10.1016/j.ijgfs.2021
  8. Pan, Y., Tikekar, R. V., & Nitin, N. (2016). Distribution of a model bioactive within solid lipid nanoparticles and nanostructured lipid carriers influences its loading efficiency and oxidative stability. International Journal of Pharmaceutics, 511(1), 322–330. https://doi.org/10.1016/j.ijpharm.2016.07.019
  9. Linander, C. B., Bojesen Christensen, R. H., Cleaver, G., & Brockhoff, P. B. (2020). Principal component analysis of d-prime values from sensory discrimination tests using binary paired comparisons. Food Quality and Preference, 81(December 2019). https://doi.org/10.1016/j.foodqual.2019.103864
  10. Domínguez-Martínez, I., Meza-Márquez, O. G., Osorio-Revilla, G., Proal-Nájera, J., & Gallardo-Velázquez, T. (2014). Determination of capsaicin, ascorbic acid, total phenolic compounds and antioxidant activity of Capsicum annuum L. var. serrano by mid infrared spectroscopy (Mid-FTIR) and chemometric analysis. Journal of the Korean Society for Applied Biological Chemistry, 57(1), 133–142. https://doi.org/10.1007/s13765-013-4295-y
  11. Cho, Y. H., Kim, S., Bae, E. K., Mok, C. K., & Park, J. (2008). Formulation of a cosurfactant-free O/W microemulsion using nonionic surfactant mixtures. Journal of Food Science, 73(3), 115–121. https://doi.org/10.1111/j.1750-3841.2008.00688.x
  12. Rohmah, M., Raharjo, S., Hidayat, C., & Martien, R. (2019). Formulasi dan Stabilitas Nanostructured Lipid Carrier dari Campuran Fraksi Stearin dan Olein Minyak Kelapa Sawit. Jurnal Aplikasi Teknologi Pangan, 8(1), 23–30. https://doi.org/10.17728/jatp.3722
  13. Huang, W., Dou, H., Wu, H., Sun, Z., Wang, H., & Huang, L. (2017). Preparation and Characterisation of Nobiletin-Loaded Nanostructured Lipid Carriers. Journal of Nanomaterials, 2017. https://doi.org/10.1155/2017/2898342
  14. Zhong, J., Yang, R., Cao, X., Liu, X., & Qin, X. (2018). Improved Physicochemical Properties of Yogurt Fortified with Fish Oil/γ-Oryzanol by Nanoemulsion Technology. Molecules, 23(1). https://doi.org/10.3390/molecules23010056
  15. Khan Chand, U. K. P. (2015). Application of Response Surface Method as an Experimental Design to Optimize Clarification Process Parameters for Sugarcane Juice. Journal of Food Processing & Technology, 06(02). https://doi.org/10.4172/2157-7110.1000422
  16. Asmara, A. P., & Amungkasi, H. K. (2019). Kajian Kinetika Pengaruh Lama Penyimpanan Terhadap Kadar Vitamin C Pada Buah Apel Malang (Malus Sylvestris). Al-Kimia, 7(2). https://doi.org/10.24252/al-kimia.v7i2.8125
  17. Dhara, K., & Debiprosad, R. M. (2019). Review on nanomaterials-enabled electrochemical sensors for ascorbic acid detection. Analytical Biochemistry, 586(July), 113415. https://doi.org/10.1016/j.ab.2019.113415
  18. Akyildiz, A., Mertoglu, T. S., & Agcam, E. (2021). Kinetic study for ascorbic acid degradation, hydroxymethylfurfural and furfural formations in Orange juice. Journal of Food Composition and Analysis, 102(May), 103996. https://doi.org/10.1016/j.jfca.2021.103996
  19. Cuevas, M. S., de Souza, P. T., da Costa Rodrigues, C. E., & Meirelles, A. J. A. (2017). Quantification and Determination of Composition of Steryl Ferulates in Refined Rice Bran Oils Using an UPLC-MS Method. JAOCS, Journal of the American Oil Chemists’ Society, 94(3), 375–385. https://doi.org/10.1007/s11746-017-2955-5
  20. Dhavamani, S., Poorna Chandra Rao, Y., & Lokesh, B. R. (2014). Total antioxidant activity of selected vegetable oils and their influence on total antioxidant values in vivo: A photochemiluminescence based analysis. Food Chemistry, 164, 551–555. https://doi.org/10.1016/j.foodchem.2014.05.064
  21. Yang, R., Zhang, L., Li, P., Yu, L., Mao, J., Wang, X., & Zhang, Q. (2018). A review of chemical composition and nutritional properties of minor vegetable oils in China. Trends in Food Science and Technology, 74, 26–32. https://doi.org/10.1016/j.tifs.2018.01.013
  22. Kim, J. I., Lee, J. H., Choi, D. S., Won, B. M., Jung, M. Y., & Park, J. (2009). Kinetic study of the quenching reaction of singlet oxygen by common synthetic antioxidants (tert-Butylhydroxyanisol, tert-di-Butylhydroxytoluene, and tert-Butylhydroquinone) as compared with α-Tocopherol. Journal of Food Science, 74(5). https://doi.org/10.1111/j.1750-3841.2009.01160.x
  23. Ouchi, A., Aizawa, K., Iwasaki, Y., Inakuma, T., Terao, J., Nagaoka, S. I., & Mukai, K. (2010). Kinetic study of the quenching reaction of singlet oxygen by carotenoids and food extracts in solution. development of a singlet oxygen absorption capacity (SOAC) assay method. Journal of Agricultural and Food Chemistry, 58(18), 9967–9978. https://doi.org/10.1021/jf101947a
  24. Sari, Y. P., Raharjo, S., Santoso, U., & Supriyadi. (2020). Bran Oil Prepared By Emulsion Phase Inversion. Food Research, 4(4), 1024–1029

Last update:

No citation recorded.

Last update:

No citation recorded.