skip to main content

REVOLUTIONIZING MASS FOOD PRODUCTION:THE POTENTIAL OF 3D FOOD PRINTING

Department of Food Technology, Universitas Katolik Soegijapranata, Semarang, Jawa Tengah, Indonesia

Received: 13 Aug 2024; Revised: 21 Nov 2024; Accepted: 21 Nov 2024; Available online: 30 Jan 2025; Published: 30 Jan 2025.

Citation Format:
Abstract

ABSTRACT

3D food printing has the potential to revolutionize mass food production by enabling the production of highly customized food products, from simple to complex structures and food products tailored to individual nutritional needs. This review explores various critical aspects of this technology, encompassing integration methods, customization possibilities, prospects, and the challenges it faces. Integration demands multidisciplinary collaboration, with a particular emphasis on optimizing parameters like ingredient and printing techniques to ensure flawless operation. The customization potential spans from tailored nutrition to intricate designs, effectively addressing diverse preferences and specific dietary needs. Advancements in the field hold the promise of improved speed, precision, and material diversity, with the potential to address sustainability issues through the utilization of by-products to further expand their capabilities. However, despite the optimistic outlook, significant challenges persist, including issues related to scalability, cost-effectiveness, and regulatory compliance. Overcoming these hurdles demands substantial investment in research and consumer education to facilitate broader adoption and acceptance. Nonetheless, the transformative potential of 3D food printing remains unquestionable, offering avenues for enhanced efficiency, sustainability, and the creation of entirely novel culinary experiences that align with evolving consumer demands and preferences.

Keywords: 3D food printing; mass food production; customization; integration methods


Fulltext View|Download
Keywords: D food printing; mass food production; customization; integration methods
Funding: Soegijapranata Catholic University

Article Metrics:

  1. Amato, A. (2023). New Research in Dietary Supplements and Healthy Foods. In New Research in Dietary Supplements and Healthy Foods. https://doi.org/10.3390/books978-3-0365-7021-1
  2. Anukiruthika, T., Moses, J. A., & Anandharamakrishnan, C. (2020). 3D printing of egg yolk and white with rice flour blends. Journal of Food Engineering, 265(August 2019), 109691. https://doi.org/10.1016/j.jfoodeng.2019.109691
  3. Arif, Z. U., Khalid, M. Y., Tariq, A., Hossain, M., & Umer, R. (2024). 3D printing of stimuli-responsive hydrogel materials: Literature review and emerging applications. Giant, 17(September 2023). https://doi.org/10.1016/j.giant.2023.100209
  4. B., L. (2017). Excess iron intake as a factor in growth, infections, and development of infants and young children. American Journal of Clinical Nutrition, 106(C), 1681S-1687S
  5. Bareen, M. A., Sahu, J. K., Prakash, S., Bhandari, B., & Naik, S. (2023). A novel approach to produce ready-to-eat sweetmeats with variable textures using 3D printing. Journal of Food Engineering, 344(December 2022), 111410. https://doi.org/10.1016/j.jfoodeng.2023.111410
  6. Barrios-Rodríguez, Y. F., Igual, M., Martínez-Monzó, J., & García-Segovia, P. (2024). Multivariate evaluation of the printing process on 3D printing of rice protein. Food Research International, 176(September 2023). https://doi.org/10.1016/j.foodres.2023.113838
  7. Bebek Markovinović, A., Brdar, D., Putnik, P., Bosiljkov, T., Durgo, K., Huđek Turković, A., Brčić Karačonji, I., Jurica, K., Pavlić, B., Granato, D., & Bursać Kovačević, D. (2024). Strawberry tree fruits (Arbutus unedo L.): Bioactive composition, cellular antioxidant activity, and 3D printing of functional foods. Food Chemistry, 433(June 2023). https://doi.org/10.1016/j.foodchem.2023.137287
  8. Blutinger, J. D., Cooper, C. C., Karthik, S., Tsai, A., Samarelli, N., Storvick, E., Seymour, G., Liu, E., Meijers, Y., & Lipson, H. (2023). The future of software-controlled cooking. Npj Science of Food, 7(1), 2–7. https://doi.org/10.1038/s41538-023-00182-6
  9. Bugarin-Castillo, Y., Rando, P., Clabaux, M., Moulin, G., & Ramaioli, M. (2023). 3D printing to modulate the texture of starch-based food. Journal of Food Engineering, 350(March), 111499. https://doi.org/10.1016/j.jfoodeng.2023.111499
  10. Cen, S., Li, Z., Guo, Z., Li, H., Shi, J., Huang, X., Zou, X., & Holmes, M. (2022). 4D printing of a citrus pectin/β-CD Pickering emulsion: A study on temperature induced color transformation. Additive Manufacturing, 56(May), 102925. https://doi.org/10.1016/j.addma.2022.102925
  11. Chirico Scheele, S., Binks, M., Christopher, G., Maleky, F., & Egan, P. F. (2023). Printability, texture, and sensory trade-offs for 3D printed potato with added proteins and lipids. Journal of Food Engineering, 351(March), 111517. https://doi.org/10.1016/j.jfoodeng.2023.111517
  12. De Salvo, M. I., Palla, C. A., & Cotabarren, I. M. (2023). Effect of printing parameters on the extrusion 3D printing of oleogel-based nutraceuticals. Journal of Food Engineering, 349(November 2022), 111459. https://doi.org/10.1016/j.jfoodeng.2023.111459
  13. Derossi, A., Caporizzi, R., Paolillo, M., Oral, M. O., & Severini, C. (2021). Drawing the scientific landscape of 3D Food Printing. Maps and interpretation of the global information in the first 13 years of detailed experiments, from 2007 to 2020. Innovative Food Science and Emerging Technologies, 70(January), 102689. https://doi.org/10.1016/j.ifset.2021.102689
  14. Derossi, A., Corradini, M. G., Caporizzi, R., Oral, M. O., & Severini, C. (2023). Accelerating the process development of innovative food products by prototyping through 3D printing technology. Food Bioscience, 52(January), 102417. https://doi.org/10.1016/j.fbio.2023.102417
  15. Derossi, A., Paolillo, M., Caporizzi, R., & Severini, C. (2020). Extending the 3D food printing tests at high speed. Material deposition and effect of non-printing movements on the final quality of printed structures. Journal of Food Engineering, 275(August 2019), 109865. https://doi.org/10.1016/j.jfoodeng.2019.109865
  16. Dewi, N. U., & Mahmudiono, T. (2021). Effectiveness of food fortification in improving nutritional status of mothers and children in Indonesia. International Journal of Environmental Research and Public Health, 18(4), 1–12. https://doi.org/10.3390/ijerph18042133
  17. Dong, X., Pan, Y., Zhao, W., Huang, Y., Qu, W., Pan, J., Qi, H., & Prakash, S. (2020). Impact of microbial transglutaminase on 3D printing quality of Scomberomorus niphonius surimi. Lwt, 124(January), 109123. https://doi.org/10.1016/j.lwt.2020.109123
  18. Fan, M., Choi, Y. J., Wedamulla, N. E., Kim, S. H., Bae, S. M., Yang, D. E., Kang, H., Tang, Y., Moon, S. H., & Kim, E. K. (2024). Different particle sizes of Momordica charantia leaf powder modify the rheological and textural properties of corn starch-based 3D food printing ink. Heliyon, 10(4), e24915. https://doi.org/10.1016/j.heliyon.2024.e24915
  19. Fanzo, J., McLaren, R., Bellows, A., & Carducci, B. (2023). Challenges and opportunities for increasing the effectiveness of food reformulation and fortification to improve dietary and nutrition outcomes. Food Policy, 119(July 2023), 102515. https://doi.org/10.1016/j.foodpol.2023.102515
  20. Fasogbon, B. M., & Adebo, O. A. (2022). A bibliometric analysis of 3D food printing research: A global and African perspective. Future Foods, 6(July), 100175. https://doi.org/10.1016/j.fufo.2022.100175
  21. Feng, C., Zhang, M., Bhandari, B., & Ye, Y. (2020). Use of potato processing by-product: Effects on the 3D printing characteristics of the yam and the texture of air-fried yam snacks. Lwt, 125(March). https://doi.org/10.1016/j.lwt.2020.109265
  22. Fernandes, A. S., Neves, B. V., Mazzo, T. M., Longo, E., Jacob-Lopez, E., Zepka, L. Q., & de Rosso, V. V. (2023). Bigels as potential inks for extrusion-based 3d food printing: Effect of oleogel fraction on physical characterization and printability. Food Hydrocolloids, 144(June). https://doi.org/10.1016/j.foodhyd.2023.108986
  23. Godoi, F. C., Prakash, S., & Bhandari, B. R. (2016). 3d printing technologies applied for food design: Status and prospects. Journal of Food Engineering, 179, 44–54. https://doi.org/10.1016/j.jfoodeng.2016.01.025
  24. Guedes, J. S., Bitencourt, B. S., & Augusto, P. E. D. (2023). Modification of maize starch by dry heating treatment (DHT) and its use as gelling ingredients in fruit-based 3D-printed food for dysphagic people. Food Bioscience, 56(June), 103310. https://doi.org/10.1016/j.fbio.2023.103310
  25. Guénard-Lampron, V., Liu, X., Masson, M., & Blumenthal, D. (2023). Screening of different flours for 3D food printing: Optimization of thermomechanical process of soy and rye flour dough. Innovative Food Science and Emerging Technologies, 87(December 2022). https://doi.org/10.1016/j.ifset.2023.103394
  26. Guo, T., Wang, T., Chen, L., & Zheng, B. (2024). Whole-grain highland barley premade biscuit prepared by hot-extrusion 3D printing: Printability and nutritional assessment. Food Chemistry, 432(August 2023), 137226. https://doi.org/10.1016/j.foodchem.2023.137226
  27. Hooi Chuan Wong, G., Pant, A., Zhang, Y., Kai Chua, C., Hashimoto, M., Huei Leo, C., & Tan, U. X. (2022). 3D food printing– sustainability through food waste upcycling. Materials Today: Proceedings, 70, 627–630. https://doi.org/10.1016/j.matpr.2022.08.565
  28. Jonkers, N., van Dijk, W. J., Vonk, N. H., van Dommelen, J. A. W., & Geers, M. G. D. (2022). Anisotropic mechanical properties of Selective Laser Sintered starch-based food. Journal of Food Engineering, 318(October 2021), 110890. https://doi.org/10.1016/j.jfoodeng.2021.110890
  29. Lee, S. H., Kim, H. W., & Park, H. J. (2023). Integrated design of micro-fibrous food with multi-materials fabricated by uniaxial 3D printing. Food Research International, 165(January), 112529. https://doi.org/10.1016/j.foodres.2023.112529
  30. Lille, M., Nurmela, A., Nordlund, E., Metsä-Kortelainen, S., & Sozer, N. (2018). Applicability of protein and fiber-rich food materials in extrusion-based 3D printing. Journal of Food Engineering, 220, 20–27. https://doi.org/10.1016/j.jfoodeng.2017.04.034
  31. Lim, W. S., Lim, N., Kim, Y. J., Woo, J. H., Park, H. J., & Lee, M. H. (2024). A cholecalciferol-loaded emulsion stabilized by a pea protein isolate–inulin complex and its application in 3D food printing. Journal of Food Engineering, 364(September 2023), 111811. https://doi.org/10.1016/j.jfoodeng.2023.111811
  32. Ling, K. C. L., Yee, A. Z. H., Leo, C. H., & Chua, C. K. (2022). Understanding 3D food printing technology: An affordance approach. Materials Today: Proceedings, 70, 622–626. https://doi.org/10.1016/j.matpr.2022.08.564
  33. Liu, Z., Zhang, M., Bhandari, B., & Wang, Y. (2017). 3D printing: Printing precision and application in food sector. Trends in Food Science and Technology, 69, 83–94. https://doi.org/10.1016/j.tifs.2017.08.018
  34. Liu, Z., Zhang, M., & Ye, Y. (2020). Indirect prediction of 3D printability of mashed potatoes based on LF-NMR measurements. Journal of Food Engineering, 287(February), 110137. https://doi.org/10.1016/j.jfoodeng.2020.110137
  35. Lv, S., Li, H., Liu, Z., Cao, S., Yao, L., Zhu, Z., Hu, L., Xu, D., & Mo, H. (2024). Preparation of Pleurotus eryngii protein baked food by 3D printing. Journal of Food Engineering, 365(September 2023), 111845. https://doi.org/10.1016/j.jfoodeng.2023.111845
  36. Lv, Y., Lv, W., Li, G., & Zhong, Y. (2023). The research progress of physical regulation techniques in 3D food printing. Trends in Food Science and Technology, 133(December 2022), 231–243. https://doi.org/10.1016/j.tifs.2023.02.004
  37. Ma, Y., Potappel, J., Chauhan, A., Schutyser, M. A. I., Boom, R. M., & Zhang, L. (2023). Improving 3D food printing performance using computer vision and feedforward nozzle motion control. Journal of Food Engineering, 339(July 2022), 111277. https://doi.org/10.1016/j.jfoodeng.2022.111277
  38. Ma, Y., Potappel, J., Schutyser, M. A. I., Boom, R. M., & Zhang, L. (2023). Quantitative analysis of 3D food printing layer extrusion accuracy: Contextualizing automated image analysis with human evaluations: Quantifying 3D food printing accuracy. Current Research in Food Science, 6(April), 100511. https://doi.org/10.1016/j.crfs.2023.100511
  39. Mantihal, S., Kobun, R., & Lee, B. B. (2020). 3D food printing of as the new way of preparing food: A review. International Journal of Gastronomy and Food Science, 22(September), 100260. https://doi.org/10.1016/j.ijgfs.2020.100260
  40. Mao, J., & Meng, Z. (2024). Fabrication and Characterization of novel high internal phase bigels with high mechanical properties: Phase inversion and personalized edible 3D food printing. Food Hydrocolloids, 153(February), 110019. https://doi.org/10.1016/j.foodhyd.2024.110019
  41. Martínez Steele, E., Popkin, B. M., Swinburn, B., & Monteiro, C. A. (2017). The share of ultra-processed foods and the overall nutritional quality of diets in the US: Evidence from a nationally representative cross-sectional study. Population Health Metrics, 15(1), 1–11. https://doi.org/10.1186/s12963-017-0119-3
  42. Mediratta, S., Ghosh, S., & Mathur, P. (2023). Intake of ultra-processed food, dietary diversity and the risk of nutritional inadequacy among adults in India. Public Health Nutrition, 26(12), 2849–2858. https://doi.org/10.1017/S1368980023002112
  43. Miao, W., Fu, Y., Zhang, Z., Lin, Q., Li, X., Sang, S., McClements, D. J., Jiang, H., Ji, H., Qiu, C., & Jin, Z. (2024). Fabrication of starch-based oleogels using capillary bridges: Potential for application as edible inks in 3D food printing. Food Hydrocolloids, 150(December 2023), 109647. https://doi.org/10.1016/j.foodhyd.2023.109647
  44. Mital, A., Desai, A., Subramanian, A., & Mital, A. (2014). The Significance of Manufacturing. Product Development, 3–19. https://doi.org/10.1016/b978-0-12-799945-6.00001-6
  45. Möller, A. C., van der Goot, A. J., & van der Padt, A. (2023). A novel process to produce stratified structures in food. Journal of Food Engineering, 345(December 2022). https://doi.org/10.1016/j.jfoodeng.2023.111413
  46. Ng, W. E., Pindi, W., Rovina, K., & Mantihal, S. (2022). Awareness and attitude towards 3D food printing technology: the case of consumer responses from Klang Valley, Malaysia. Food Research, 6(4), 364–372. https://doi.org/10.26656/fr.2017.6(4).530
  47. Ning, X., Devahastin, S., Wang, X., Wu, N., Liu, Z., Gong, Y., Zhou, L., Huo, L., Ding, W., Yi, J., Guo, C., & Hu, X. (2024). Understanding 3D food printing through computer simulation and extrusion force analysis. Journal of Food Engineering, 370(September 2023), 111972. https://doi.org/10.1016/j.jfoodeng.2024.111972
  48. Niu, D., Zhang, M., Mujumdar, A. S., & Li, J. (2023). Investigation of 3D printing of toddler foods with special shape and function based on fenugreek gum and flaxseed protein. International Journal of Biological Macromolecules, 253(P5), 127203. https://doi.org/10.1016/j.ijbiomac.2023.127203
  49. Olson, R., Gavin-Smith, B., Ferraboschi, C., & Kraemer, K. (2021). Food fortification: The advantages, disadvantages and lessons from sight and life programs. Nutrients, 13(4). https://doi.org/10.3390/nu13041118
  50. Pan, J., Chen, X., Zhu, Y., Xu, B., Li, C., Khin, M. N., Cui, H., & Lin, L. (2024). Design and development of dual-extruder food 3D printer based on selective compliance assembly robot arm and printing of various inks. Journal of Food Engineering, 370(September 2023), 111973. https://doi.org/10.1016/j.jfoodeng.2024.111973
  51. Pant, A., Zhang, Y., Kai Chua, C., Jia Yao Tan, J., Hashimoto, M., Huei Leo, C., Hooi Chuan Wong, G., & Tan, U. X. (2022). 3D food printing – Asian snacks and desserts. Materials Today: Proceedings, 70, 611–615. https://doi.org/10.1016/j.matpr.2022.08.563
  52. Pitayachaval, P., Sanklong, N., & Thongrak, A. (2018). A Review of 3D Food Printing Technology. MATEC Web of Conferences, 213, 1–5. https://doi.org/10.1051/matecconf/201821301012
  53. Raffaeli, G., Manzoni, F., Cortesi, V., Cavallaro, G., Mosca, F., & Ghirardello, S. (2020). Iron homeostasis disruption and oxidative stress in preterm newborns. Nutrients, 12(6), 1–21. https://doi.org/10.3390/nu12061554
  54. Ren, S., Tang, T., Bi, X., Liu, X., Xu, P., & Che, Z. (2023). Effects of pea protein isolate on 3D printing performance, nutritional and sensory properties of mango pulp. Food Bioscience, 55(August), 102994. https://doi.org/10.1016/j.fbio.2023.102994
  55. Rogers, H., & Srivastava, M. (2021). Emerging sustainable supply chain models for 3d food printing. Sustainability (Switzerland), 13(21). https://doi.org/10.3390/su132112085
  56. Severini, C., Derossi, A., Ricci, I., Caporizzi, R., & Fiore, A. (2018). Printing a blend of fruit and vegetables. New advances on critical variables and shelf life of 3D edible objects. Journal of Food Engineering, 220, 89–100. https://doi.org/10.1016/j.jfoodeng.2017.08.025
  57. Shi, H., Li, J., Xu, E., Yang, H., Liu, D., & Yin, J. (2023). Microscale 3D printing of fish analogues using soy protein food ink. Journal of Food Engineering, 347(December 2022), 111436. https://doi.org/10.1016/j.jfoodeng.2023.111436
  58. Shi, R., Liu, Z., Yi, J., Hu, X., & Guo, C. (2024). The synergistic effect of κ-carrageenan and L-lysine on the 3D printability of yellow flesh peach gels: The importance of material elasticity in the printing process. International Journal of Biological Macromolecules, 254(P3), 127920. https://doi.org/10.1016/j.ijbiomac.2023.127920
  59. Shi, S., Wen, J., Geng, H., Zhan, X., & Liu, Y. (2024). Physicochemical properties, structural properties and gels 3D printing properties of wheat starch. International Journal of Biological Macromolecules, 261(P2), 129885. https://doi.org/10.1016/j.ijbiomac.2024.129885
  60. Singh, M., & Singh, R. (2022). 3D Food Printing and its Applications: A Review. International Journal of Innovation and Multidisciplinary Research, 1(1), 31–39
  61. Singhal, S., Rasane, P., Kaur, S., Garba, U., Bankar, A., Singh, J., & Gupta, N. (2020). 3D food printing: Paving way towards novel foods. Anais Da Academia Brasileira de Ciencias, 92(3), 1–26. https://doi.org/10.1590/0001-3765202020180737
  62. Sun, Y., Huang, X., Guo, S., Wang, Y., Feng, D., Dong, X., & Qi, H. (2024). Undaria pinnatifida gel inks for food 3D printing are developed based on the colloidal properties of Undaria pinnatifida slurry and protein/colloidal/starch substances. International Journal of Biological Macromolecules, 261(P1), 129788. https://doi.org/10.1016/j.ijbiomac.2024.129788
  63. Tan, J. Da, Lee, C. P., Leo, C. H., & Hashimoto, M. (2022). Enhancing three-dimensional (3D) printablity of durian husk inks. Materials Today: Proceedings, 70, 698–702. https://doi.org/10.1016/j.matpr.2022.10.126
  64. Tebben, P. J., Singh, R. J., & Kumar, R. (2016). Vitamin D-mediated hypercalcemia: Mechanisms, diagnosis, and treatment. Endocrine Reviews, 37(5), 521–547. https://doi.org/10.1210/er.2016-1070
  65. Tesikova, K., Jurkova, L., Dordevic, S., Buchtova, H., Tremlova, B., & Dordevic, D. (2022). Acceptability Analysis of 3D-Printed Food in the Area of the Czech Republic Based on Survey. Foods, 11(20). https://doi.org/10.3390/foods11203154
  66. Venkatachalam, A., Balasubramaniam, A., Wilms, P. F. C., Zhang, L., & Schutyser, M. A. I. (2023). Impact of varying macronutrient composition on the printability of pea-based inks in extrusion-based 3D food printing. Food Hydrocolloids, 142(April), 108760. https://doi.org/10.1016/j.foodhyd.2023.108760
  67. Wang, H., Cheng, Y., Zhu, J., Ouyang, Z., Tang, M., Ma, L., & Zhang, Y. (2023). High temperature induced stable gelatin-gardenia blue system with hyperchromic effect and its food application in 2D writing/printing and 3D printing. Food Chemistry, 401(July 2022), 134119. https://doi.org/10.1016/j.foodchem.2022.134119
  68. Wang, H., Cheng, Y., Zhu, J., Yang, Y., Qiao, S., Li, H., Ma, L., & Zhang, Y. (2024). Gelatin/polychromatic materials microgels enhanced by carnosic acid inclusions and its application in 2D pattern printing and multi-nozzle food 3D printing. International Journal of Biological Macromolecules, 261(P1), 129749. https://doi.org/10.1016/j.ijbiomac.2024.129749
  69. Wang, J., Jiang, Q., Huang, Z., Muhammad, A. H., Gharsallaoui, A., Cai, M., Yang, K., & Sun, P. (2024). Rheological and mechanical behavior of soy protein-polysaccharide composite paste for extrusion-based 3D food printing: Effects of type and concentration of polysaccharides. Food Hydrocolloids, 153(February), 109942. https://doi.org/10.1016/j.foodhyd.2024.109942
  70. Wang, M., Bao, Y., Li, D., Bian, Y., Si, X., Gao, N., Cheng, Z., Gui, H., Dong, W., Jiang, H., & Li, B. (2024). Scientometrics and visualized analysis of 3D food printing: A boost to future food customized development. Food Bioscience, 58(March). https://doi.org/10.1016/j.fbio.2024.103844
  71. Wang, M., Lu, X., Zheng, X., Li, W., Wang, L., Qian, Y., & Zeng, M. (2023). Rheological and physicochemical properties of Spirulina platensis residues-based inks for extrusion 3D food printing. Food Research International, 169(April), 112823. https://doi.org/10.1016/j.foodres.2023.112823
  72. Warkentin, M., Bapna, R., & Sugumaran, V. (2000). The role of mass customization in enhancing supply chain relationships in B2C e-commerce markets. Journal of Electronic Commerce, 1(2), 1–17. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.43.2998&rep=rep1&type=pdf
  73. Wen, Y., Kim, H. W., & Park, H. J. (2022). Effects of transglutaminase and cooking method on the physicochemical characteristics of 3D-printable meat analogs. Innovative Food Science and Emerging Technologies, 81(November 2021), 103114. https://doi.org/10.1016/j.ifset.2022.103114
  74. Wu, J., Zhu, H., & Li, C. (2024). Potential sources of novel proteins suitable for use as ingredients in 3D food printing, along with some of the food safety challenges. International Journal of Gastronomy and Food Science, 37(February), 100983. https://doi.org/10.1016/j.ijgfs.2024.100983
  75. Yang, F., Zhang, M., Bhandari, B., & Liu, Y. (2018). Investigation on lemon juice gel as food material for 3D printing and optimization of printing parameters. Lwt, 87, 67–76. https://doi.org/10.1016/j.lwt.2017.08.054
  76. Zhang, C., Wang, C. S., Girard, M., Therriault, D., & Heuzey, M. C. (2024). 3D printed protein/polysaccharide food simulant for dysphagia diet: Impact of cellulose nanocrystals. Food Hydrocolloids, 148(June 2023). https://doi.org/10.1016/j.foodhyd.2023.109455
  77. Zhong, Y., Wang, B., Lv, W., Li, G., Lv, Y., & Cheng, Y. (2024). Egg yolk powder-starch gel as novel ink for food 3D printing: Rheological properties, microstructure and application. Innovative Food Science and Emerging Technologies, 91(December 2023), 103545. https://doi.org/10.1016/j.ifset.2023.103545
  78. Zhu, J., Cheng, Y., Ouyang, Z., Yang, Y., Ma, L., Wang, H., & Zhang, Y. (2023). 3D printing surimi enhanced by surface crosslinking based on dry-spraying transglutaminase, and its application in dysphagia diets. Food Hydrocolloids, 140(2), 108600. https://doi.org/10.1016/j.foodhyd.2023.108600
  79. Zhu, S., Vazquez Ramos, P., Heckert, O. R., Stieger, M., van der Goot, A. J., & Schutyser, M. (2022). Creating protein-rich snack foods using binder jet 3D printing. Journal of Food Engineering, 332(May), 111124. https://doi.org/10.1016/j.jfoodeng.2022.111124

Last update:

No citation recorded.

Last update:

No citation recorded.