ANALISIS KADAR PROTEIN, ASAM AMINO, DAN DAYA TERIMA PEMBERIAN MAKANAN TAMBAHAN (PMT) PEMULIHAN BERBASIS LABU KUNING (CUCURBITA MOSCHATA) UNTUK BATITA GIZI KURANG

*Fiona Christina Widya -  Departemen Ilmu Gizi, Fakultas Kedokteran, Universitas Diponegoro, Indonesia
Gemala Anjani -  Departemen Ilmu Gizi, Fakultas Kedokteran, Universitas Diponegoro, Indonesia
Ahmad Syauqy -  Departemen Ilmu Gizi, Fakultas Kedokteran, Universitas Diponegoro, Indonesia
Received: 26 Nov 2019; Published: 26 Nov 2019.
Open Access
Citation Format:
Article Info
Section: Articles
Language: EN
Full Text:
Abstract

Latar Belakang: Batita dengan status gizi kurang memiliki risiko morbiditas dan mortalitas yang lebih tinggi. Pemberian Makanan Tambahan (PMT) Pemulihan yang terbuat dengan bahan-bahan bernilai gizi tinggi seperti labu kuning (Cucurbita moschata) dapat menjadi alternatif makanan yang baik. Tujuan penelitian adalah untuk menganalisis perbedaan kandungan protein, asam amino, dan daya terima dari PMT-P berbasis labu kuning dengan tiga macam formulasi.

Metode: Tiga macam formulasi—20% biji labu (A1); 25% biji labu (A2); 30% biji labu (A3) —diuji dalam eksperimen rancangan acak lengkap dengan tiga ulangan, kecuali untuk uji kandungan asam amino yang hanya dilakukan satu pengulangan. Kandungan protein diuji dengan metode Kjeldahl, di mana kandungan asam amino dianalisis dengan metode HPLC. Uji organoleptik dilakukan dengan uji hedonik berskala 5 pada 25 orang panelis. Perbedaan kandungan protein diuji dengan One Way ANOVA dan daya terima dianalisis dengan uji Kruskal-Wallis pada α = 5%. Sedangkan kandungan asam amino dianalisis secara deskriptif.

Hasil: Kadar protein (% w/w) menunjukkan perbedaan signifikan antarformulasi (p = 0,000), dengan kandungan tertinggi pada formulasi A3 (13,87±0,30), diikuti dengan A2 (11,70±0,19) and A1 (9,63±0,23). Formulasi dengan kadar asam amino (% w/w) tertinggi secara keseluruhan adalah pada formulasi A3 (10,00), diikuti dengan A2 (8,65) dan A1 (7,39). Tingkat kesukaan tertinggi dari segi penampilan, warna, dan aroma ditemukan pada formulasi A1 (p = 0,007; 0,000; and 0,028).

Simpulan: Formulasi PMT-P berbasis labu kuning dengan 30% biji labu kuning memiliki kandungan protein dan asam amino tertinggi, sedangkan PMT-P dengan 20% biji labu kuning memiliki tingkat kesukaan paling tinggi. Formulasi yang direkomendasikan untuk digunakan adalah formulasi A1.

Keywords
protein; asam amino; biji labu kuning; PMT; batita; gizi kurang
  1. Atmarita. Nutrition Problems in Indonesia. Penelit Gizi dan Makanan. 2005;28(2):35–46.
  2. Kementerian Kesehatan Republik Indonesia. Hasil Utama Riskesdas 2018. Jakarta; 2018.
  3. Dinas Kesehatan Provinsi Jawa Tengah. Profil Kesehatan Provinsi Jawa Tengah Tahun 2016. Semarang; 2017.
  4. Walson JL, Berkley JA. The impact of malnutrition on childhood infections. Curr Opin Infect Dis. 2018;31(3):231–6.
  5. Victora CG, Adair L, Fall C, Hallal PC, Martorell R, Richter L, et al. Maternal and child undernutrition: consequences for adult health and human capital. Lancet. 2008;371(9609):340–57.
  6. Martins VJB, Florê TMMT, Santos CDL, Vieira MDFA, Sawaya AL. Long-Lasting Effects of Undernutrition. Int J Environ Res Public Health. 2011;8(6):1817–46.
  7. Ernawai F, Prihatini M, Yuriestia A. Gambaran Konsumsi Protein Nabati dan Hewani pada Anak Balita Stunting dan Gizi Kurang di Indonesia. Penelit Gizi dan Makanan. 2016;39(2):95–102.
  8. Diniyyah SR, Nindya TS. Asupan Energi , Protein dan Lemak dengan Kejadian Gizi Kurang pada Balita Usia 24-59 Bulan di Desa Suci, Gresik. Amerta Nutr. 2017;341–50.
  9. Ibrahim IA, Nurdiyanah, Supriadi. Gambaran Asupan Energi Protein dan Konsumsi Ikan Anak Balita (24-59 Bulan) Gizi Kurang di Puskesmas Dahlia Kecamatan Mariso Kota Makassar Tahun 2015. Media Gizi Pangan. 2016;12(1):107–16.
  10. Arsenault JE, Brown KH. Effects of protein or amino-acid supplementation on the physical growth of young children in low-income countries. 2017;75(9):699–717.
  11. Tome D, Jahoor F, Kurpad A, Micaelsen KF, Pencharz P, Slater C, et al. Current issues in determining dietary protein quality and metabolic utilization. Eur J Clin Nutr. 2014;68:537–8.
  12. Furuta C, Murakami H. A Novel Concept of Amino Acid Supplementation to Improve the Growth of Young Malnourished Male Rats. Ann Nutr Metab. 2018;72(3):231–40.
  13. Ditjen Bina Gizi dan Kesehatan Ibu dan Anak. Panduan Penyelenggaraan Pemberian Makanan Tambahan Pemulihan Bagi Balita Gizi Kurang (Bantuan Operasional Kesehatan). Jakarta: Kementerian Kesehatan RI; 2011.
  14. Kementerian Kesehatan Republik Indonesia. Perbaikan Gizi untuk Generasi Agar Mampu Menangkan Persaingan. Jakarta; 2016.
  15. Indriati R, Nugraheni SA, Kartini A. Evaluasi Program Pemberian Makanan Tambahan Pemulihan pada Balita Kurang Gizi di Kabupaten Wonogiri Ditinjau dari Aspek Input dan Proses. Manaj Kesehat Indones. 2015;3(1):18–26.
  16. Iskandar. Pengaruh Pemberian Makanan Tambahan Modifikasi Terhadap Status Gizi Balita (Effect of supplementary feeding modification on nutritional status of toddler ). Aceh Nutr J. 2017;2(2):120–5.
  17. Fitriyanti F, Mulyati T. Pengaruh Pemberian Makanan Tambahan Pemulihan (PMT-P) Terhadap Status Gizi Buruk di Dinas Kesehatan Kota Semarang Tahun 2012. J Nutr Coll. 2014;1(1):373–81.
  18. Menteri Kesehatan Republik Indonesia. Peraturan Menteri Kesehatan Republik Indonesia Nomor 51 Tahun 2016 tentang Standar Produk Suplementasi Gizi. Jakarta; 2016.
  19. Drewnowski A, Dwyer J, King JC, Weaver CM. A proposed nutrient density score that includes food groups and nutrients to better align with dietary guidance. Nutr Rev. 2019;77(6):404–16.
  20. Drewnowski A, Fulgoni VL. Nutrient density: principles and evaluation tools. Am J Clin Nutr. 2014;99(5):1223S–1228S.
  21. United States Department of Agriculture. Full Report (All Nutrients) 12163, Seeds, pumpkin and squash seeds, whole, roasted, without salt. 2017.
  22. Ocloo FCK, Bansa D, Boatin R, Adom T, Agbemavor WS, Lg POB. Physico-chemical , functional and pasting characteristics of flour produced from Jackfruits ( Artocarpus heterophyllus ) seeds. Agric Biol J North Am. 2010;1(5):903–8.
  23. Uchôa-thomaz AMA, Sousa EC, Osvaldo J, Carioca B, Morais SM De, Lima A De, et al. Chemical composition, fatty acid profile and bioactive compounds of guava seeds (Psidium guajava L.). Food Sci Technol. 2014;34(3):485–92.
  24. Karanja JK, Mugendi BJ, Khamis FM, Muchugi AN. Nutritional Composition of the Pumpkin (Cucurbita spp.) Seed Cultivated from Selected Regions in Kenya. J Hortic Lett. 2013;3(1):17–22.
  25. Fedha MS. Physicochemical Characterization and Food Application Potential of Pumpkin (Cucurbita Sp.) Fruit and Seed Kernel Flours. Jomo Kenyatta University of Agriculture and Technology; 2008.
  26. Miah MY, Bhattacharjee S, Sultana A, Bhowmik S, Kumar A. Evaluation of amino acid profile of jackfruit (Artocarpus heterophyllus) seed and its utilization for development of protein enriched supplementary food. J Noakhali Sci Technol Univ. 2017;1(1):77–84.
  27. Nicanor AB, Moreno AO, Ayala ALM, Ortiz GD. Guava Seed Protein Isolate: Functional and Nutritional Characterization. J Food Biochem. 2000;91(5):77–90.
  28. United States Department of Agriculture. Basic Report 11422, Pumpkin, raw. 2017.
  29. Dinas Pertanian Kabupaten Blora. Tingkat Produksi Labu Kuning di Indonesia. Blora; 2014.
  30. Dipnaik K, Bathere D. Effect of soaking and sprouting on protein content and transaminase activity in pulses. Int J Res Med Sci. 2017;5(10):4271–6.
  31. Gupta RK, Gangoliya SS. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J Food Sci Technol. 2015;52(February):676–84.
  32. Widjajaseputra AI, Widyastuti TEW, Trisnawati CY. Potency of mung bean with different soaking times as protein source for breastfeeding women in Indonesia. Food Res. 2019;3(5):501–5.
  33. Holli EEB, Nour AAM, Ahmed AI. Effect of Soaking on the Nutritional Values of Kordala (Maerua Pseudopetalosa) Seeds Grown in Kordofan Region, Sudan. J Food Technol Res. 2017;4(2):40–5.
  34. D’Souza MR. Effect of Traditional processing Methods on Nutritional Quality of Field Bean. Adv Biores. 2013;4(3):29–33.
  35. Nissar J, Ahad T, Naik H, Hussain S. A review phytic acid: As antinutrient or nutraceutical. J Pharmacogn Phytochem. 2017;6(6):1554–60.
  36. Khattab RY, Arntfield SD, Nyachoti CM. Nutritional quality of legume seeds as affected by some physical treatments, Part 1: Protein quality evaluation. LWT - Food Sci Technol. 2009;42(6):1107–12.
  37. Mahesh S, Pavithra G, Parvathi M, Reddy R, Shankar A. Effect of processing on phytic acid content and nutrient availability in food grains. Int J Agric Sci. 2015;5(5):770–7.
  38. Hamed SY, El Hassan NM, Babiker HA, Eltayeb MM. Nutritional Evaluation and Physiochemical Properties of Processed Pumpkin (Telfairia occidentalis Hook) Seed Flour. Pakistan J Nutr. 2008;7(2):330–4.
  39. Abusham RAA. Nutritional evaluation of processed pigeon pea and roasted pumpkin seeds. 2007.
  40. Joye I. Protein Digestibility of Cereal Products. Foods. 2019;8(6):199.
  41. Preti R, Rapa M, Vinci G. Effect of Steaming and Boiling on the Antioxidant Properties and Biogenic Amines Content in Green Bean (Phaseolus vulgaris) Varieties of Different Colours. J Food Qual. 2017;1–8.
  42. Fabbri AD., Crosby GA. A review of the impact of preparation and cooking on the nutritional quality of vegetables and legumes. Int J Gastron Food Sci. 2016;3:2–11.
  43. El-Adawy TA, Taha KM. Characteristics and Composition of Watermelon, Pumpkin, and Paprika Seed Oils and Flours. J Agric Food Chem. 2001;49:1253–9.
  44. Kim MY, Kim EJ, Kim Y, Choi C, Lee B. Comparison of the chemical compositions and nutritive values of various pumpkin ( Cucurbitaceae ) species and parts. Nutr Res Pract. 2012;6(1):21–7.
  45. Barasi E, Fatimah F, Mamuaja C. Karakterisasi Santan di Sulawesi Utara Sebagai Bahan Baku Santan Instan. J Ilmu dan Teknol Pangan. 2014;2(2):20–7.
  46. Patil U, Benjakul S, Prodpran T, Senphan T, Cheetangdee N. A Comparative Study of the Physicochemical Properties and Emulsion Stability of Coconut Milk at Different Maturity Stages. Ital J Food Sci. 2017;29:145–57.
  47. Manary M, Callaghan M. Protein Quality and Growth in Malnourished Children. Food Nutr Bull. 2016;37(Supplement 1):29–36.
  48. Sugiharto E, Ayustaningwarno F. Kandungan Zat Gizi dan Tingkat Kesukaan Roti Manis Substitusi Tepung Spirulina Sebagai Alternatif Makanan Tambahan Anak Gizi Kurang. J Nutr Coll. 2014;3(4):911–7.
  49. Imandira PAN, Ayustaningwarno F. Pengaruh Substitusi Tepung Daging Ikan Lele Dumbo (Clarias gariepinus) dan Tepung Ubi Jalar Kuning (Ipomoea batatas l.) Terhadap Kandungan Zat Gizi dan Penerimaan Biskuit Balita Tinggi Protein dan B-Karoten. J Nutr Coll. 2013;2(1):89–97.
  50. Food and Agriculture Organization of the United Nations. Dietary protein quality evaluation in human nutrition. Auckland, New Zealand; 2011.
  51. Hendriks WH. Nutritional quality of proteins. Wageningen University & Research. Wageningen, Netherlands; 2019.
  52. Mathai JK, Liu Y, Stein HH. Values for digestible indispensable amino acid scores ( DIAAS ) for some dairy and plant proteins may better describe protein quality than values calculated using the concept for protein digestibility-corrected amino acid scores ( PDCAAS ). Br J Nutr. 2017;117:490–9.
  53. Gilani GS, Xiao CW, Cockell KA. Impact of Antinutritional Factors in Food Proteins on the Digestibility of Protein and the Bioavailability of Amino Acids and on Protein Quality. Br J Nutr. 2012;108:S315–32.
  54. Vliet S Van, Burd NA, Loon LJC Van. The Skeletal Muscle Anabolic Response to Plant- versus Animal-Based Protein Consumption. J Nutr. 2015;145(9):1981–91.
  55. Le DT, Chu HD, Le NQ. Improving Nutritional Quality of Plant Proteins Through Genetic Engineering. Curr Genomics. 2016;17(3):220–9.
  56. Halver JE. Chapter 3. Proteins and Amino Acids. Seattle, Washington; 2019.
  57. Lourenço SO, Barbarino E, De-Paula JC, Pereira LODS, Lanfer Marquez UM. Amino acid composition, protein content and calculation of nitrogen-to-protein conversion factors for 19 tropical seaweeds. Phycol Res. 2002;50(3):233–41.
  58. Mæhre HK, Dalheim L, Edvinsen GK, Elvevoll EO, Jensen IJ. Protein determination—Method matters. Foods. 2018;7(1):1–11.
  59. Jiang B, Tsao R, Li Y, Miao M. Food Safety: Food Analysis Technologies/Techniques. Encycl Agric Food Syst. 2014;3:273–88.
  60. Lynch JM, Barbano DM. Kjeldahl nitrogen analysis as a reference method for protein determination in dairy products. J AOAC Int. 1999;82(6):1389–92.
  61. Hall NG, Schönfeldt HC. Total nitrogen vs. amino-acid profile as indicator of protein content of beef. Food Chem [Internet]. 2013;140(3):608–12. Available from: http://dx.doi.org/10.1016/j.foodchem.2012.08.046
  62. Mariotti F, Tome D, Mirand PP. Converting nitrogen into proteinㅡBeyond 6.25 and Jones’ factors. Crit Rev Food Sci Nutr. 2008;48:177–84.
  63. Jones DB. Factors for Converting Percentages of Nitrogen in Foods and Feeds into Percentages of Protein. Washington, DC, USA; 1941.
  64. Pratap G, Jadaun S, Dixit S, Saklani V, Mendiratta S, Jain R, et al. HPLC for Peptides and Proteins : Principles, Methods and Applications. Pharm Methods. 2016;8(1):139–44.
  65. Bellisle F. Intense Sweeteners, Appetite for the Sweet Taste, and Relationship to Weight Management. Curr Obes Rep. 2015;4(1):106–10.
  66. Mennella JA. The sweetness and bitterness of childhood: Insights from basic research on taste preferences. Physiol Behav. 2016;152:502–7.
  67. Boulanger AM, Vernet M. Introduction of new food textures during complementary feeding: Observations in France. Arch Pédiatrie. 2018;25(1):6–12.
  68. Van der Horst K, Deming DM, Lesniauskas R, Carr BT, Reidy KC. Picky eating: Associations with child eating characteristics and food intake. Appetite. 2016;103:286–93.
  69. Suranto, Tedianto, Purwanto E, Setyono P, Mahadjoeno E. The Relationship Between Altitudes and the Contents of Protein, Carbohydrates, Lipids of Pumpkin (Cucurbita moschata). Agrivita. 2015;37(1):59–66.
  70. Usmiati S, Setyaningsih D, Purwani EY, S. Y, Maria OG. Karakteristik Serbuk Labu Kuning (Cucurbita moschata). J Teknol dan Ind Pangan. 2005;16(2):157–67.
  71. Carvalho LMJ de, Smirderle L de ASM, Carvalho JLV de, Cardoso F de SN, Koblitz MGB. Assessment of carotenoids in pumpkins after different home cooking conditions. Food Sci Technol. 2014;34(2):365–70.
  72. Shahidan N, Othman R, Hashim YZH-Y, Othman R. Carotenoid content in different locality of pumpkin (Cucurbita moschata) in Malaysia. Int J Pharm Pharm Sci. 2014;6(Supplement 3):29–32.
  73. Li CZ, Hu MX. Evaluation of three pumpkin species : correlation with physicochemical , antioxidant properties and classification using SPME-GC – MS and E-nose methods. J Food Sci Technol. 2017;54(10):3118–31.
  74. Potocnik T, Kosir IJ. Influence of roasting temperature of pumpkin seed on PAH and aroma formation. Eur J Lipid Sci Technol. 2016;119(3):1–8.
  75. Rizzi GP. The Strecker Degradation and Its Contribution to Food Flavor. In: Teranishi R, Wick EL, Hornstein I, editors. Flavor Chemistry. Boston, MA: Springer; 1999. p. 335–43.
  76. Leffingwell JC, Alford ED, Leffingwell D. Identification of the Volatile Constituents of Raw Pumpkin (Cucurbita pepo L.) by Dynamic Headspace Analyses. Leffingwell Reports. 2015;7(1):1–14.
  77. da Sila M de FG, de Sousa PHM, Figueiredo RW, Gouveia ST, Lima JSS. Cooking effects on bioactive compounds and sensory acceptability in pumpkin (Cucurbita moschata cv. Leite). Rev Ciência Agronômica. 2019;50(3):394–401.
  78. Rahmah FA, Nurminabari IS, Gozali T. Pengaruh Penggunaan Jenis GUla Merah dan Lama Fermentasi Terhadap Karakteristik Water Kefir. Jurnal Penelitian Tugas Akhir. Bandung; 2017.
  79. Marina AM, Azizah SN. Use of Coconut Versus Dairy Milk Products in Malaysian Dishes: Comparison of Nutritional Composition and Sensory Evaluation. J Food Nutr Res. 2014;2(4):204–8.
  80. Dhingra D, Michael M, Rajput H. Dietary fibre in foods: a review. J Food Sci Technol. 2012;49(June):255–66.