skip to main content

PENGARUH PEMBERIAN TEPUNG SORGUM (Sorghum bicolor L. Moench) TERHADAP KADAR GLUKOSA DARAH PUASA TIKUS DIABETES

Departemen Ilmu Gizi, Fakultas Kedokteran, Universitas Diponegoro, Indonesia

Received: 28 Jul 2019; Published: 25 Apr 2020.

Citation Format:
Abstract

Latar Belakang : Diabetes adalah kelainan endokrin yang ditandai dengan hiperglikemi akibat resistensi insulin. Tepung sorgum memiliki indeks glikemik yang tergolong rendah dan kandungan serat yang tinggi sehingga dapat menurunkan kadar glukosa darah puasa dan meningkatkan sensitivitas insulin.

Tujuan: Mengetahui perbedaan pemberian tepung sorgum terhadap kadar glukosa darah puasa pada tikus diabetes.

Metode : Penelitian true experimental dengan desain pretest-posttest randomized control group. Sebanyak 18 ekor tikus wistar jantan dibagi menjadi 3 kelompok meliputi kelompok kontrol negatif (K -), kontrol positif (K +) dan perlakuan (P). Kelompok K – dan K + diberi pakan standar sebanyak 20 g/hari, sedangkan P diberi pakan yang terdiri dari tepung sorgum 5 g/hari dan pakan standar sebanyak 15 g/hari selama 28 hari. Kadar glukosa darah diukur dengan metode GOD – PAP menggunakan spektrofotometer. Data yang terkumpul dianalisis secara statistik menggunakan uji Paired t – Test, uji One Way Anova, dan uji Kruskal Wallis.

Hasil: Terdapat perbedaan signifikan kadar glukosa darah puasa antar kelompok sebelum (p=0,000) dan sesudah (p=0,000) pemberian perlakuan Selisih penurunan kadar glukosa darah puasa pada kelompok P sebanyak 150,63± 2,57 mg/dl (p=0,000).

Simpulan : Tepung sorgum dapat menurunkan kadar glukosa darah puasa tikus diabetes secara signifikan.

Fulltext View|Download
Keywords: Tepung sorgum; diabetes; kadar glukosa darah puasa

Article Metrics:

  1. Slavin JL. Structure, Nomenclature, and Properties of Carbohydrate. In: Biochemical, Physiological, and Molecular Aspects of Human Nutrition. Elsevier; 2013. p. 50–65
  2. Leszek S. Glucose Homeostasis - Mechanism and Defects. In: Diabetes - Damages and Treatments [Internet]. IntechOpen; 2011. p. 227–32. Available from: https://doi.org/10.5772/1823
  3. Roth SL. Diseases of the Endocrine System. In: Nutrition Therapy and Pathophysiology. 2nd ed. Wadswort, Cengage Learning; 2011
  4. Forouhi NG, Wareham NJ. Epidemiology of diabetes. Medicine (Abingdon). 2014 Dec;42(12):698–702
  5. Kaku K. Pathophysiology of Type 2 Diabetes and Its Treatment Policy. JMAJ. 2010;53(1):41–6
  6. Rudijanto A, Yuwono A, Shahab Manaf A, Pramono B, Lindarto D, et al. Konsensus Pengelolaan dan Pencegahan Diabetes Mellitus Tipe 2 di Indonesia. Pengurus Besar Perkumpulan Endokrinologi Indonesia; 2015
  7. Indah IS. Konsumsi Makanan Penduduk Indonesia. Pusat Data dan Informasi Kementrian Kesehatan RI; 2017
  8. Kusumana A, Budiman A, Hidayat A. Development Production and Food Consumption in Indonesia. MPRA Paper [Internet]. 2017 [cited 2018 Aug 2];(79976). Available from: https://mpra.ub.uni-muenchen.de/79976
  9. Altuna P. World Sorghum Market. Global Grain Asia; 2014
  10. Luna P, Widowati S. Potensi dan Status Pengembangan Sorgum di Propinsi Jawa Timur dalam Upaya Gerakan Diversifikasi Pangan Nasional. Balai Besar Penelitian dan Pengembangan Pascapanen Pertanian. 2014
  11. Dicko MH, Gruppen H, Voragen AGJ, van Berkel WJH. Sorghum Grain as Human Food in Africa: Relevance of Content of Starch and Amylase Activities. Afr J Biotechnol. 2006;5(5):384–95
  12. Stefoska-Needham A, Beck EJ, Johnson SK, Tapsell LC. Sorghum: an Underutilized Cereal Whole Grain with the Potential to Assist in the Prevention of Chronic Disease. Food Reviews International. 2015;31(4):401–37
  13. Muchtadi TR, Sugiyono S, Ayustaningwarno F. Ilmu Pengetahuan Bahan Pangan. Alfabeta; 2010
  14. Pruett A. A Comparison of The Glycemic Index of Sorghum and Other Commonly Consumed Grains [Internet]. [Kansas]: Kansas State University; 2012 [cited 2018 Aug 21]. Available from: http://krex.k-state.edu/dspace/bitstream/handle/2097/13810/AshleyPruett2012.pdf?sequen ce=1&isAllowed=y
  15. Salimi YK. Peranan Ekstrak dan Tepung Sorgum (Sorgum bicolor L.) dalam Penghambatan Kanker secara In Vitro dan In Vivo pada Mencit BALB/c [Internet]. [Bogor]: Institut Pertanian Bogor; 2012 [cited 2018 Jul 30]. Available from: https://repository.ipb.ac.id/jspui/bitstream/123456789/55429/1/2012yks.pdf
  16. Harini S. Perbedaan Nilai Indeks Glikemik Beras Hitam (Oryza Sativa L. Indica), Beras Merah (Oryza Nivara), dan Beras Putih (Oryza Sativa). [Malang]: Universitas Brawijaya; 2013
  17. Rolfes SR, Pinna K, Whitney E. Understanding Normal and Clinical Nutrition. 8th ed. Wadswort, Cengage Learning; 2009
  18. Ojo O, Ojo OO, Adebowale F, Wang XH. The Effect of Dietary Glycaemic Index on Glycaemia in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Contolled Trials. Nutrients. 2018;10(373)
  19. Chen C, Zeng Y, Xu J, Zheng H, Liu J, Fan R, et al. Therapeutic Effects of Soluble Dietary Fiber Consumption on Type 2 Diabetes Mellitus. Experimental and Therapeutic Medicine. 2016;12:1232–42
  20. Lattimer JM, Haub MD. Effects of Dietary Fiber and Its Components on Metabolic Health. Nutrients. 2010;2:1266–89
  21. Chandalia M, Garg A, Lutjohann D, von Bergmann K, Grundy SM, Brinkley LJ. Beneficial Effect of High Dietary Fiber Intake in Patients with Type 2 Diabetes Mellitus. E Engl J Med. 2000;342:1392–8
  22. Kim J, Park Y. Anti-diabetic Effect of Sorghum Extract on Hepatic Gluconeogenesis of Streptozotocin-induced Diabetic Rats. Nutr Metab (Lond). 2012;9:106
  23. Park JH, Lee SH, Chung I-M, Park Y. Sorghum Extract Exerts an Anti- iabetic Effect by Improving Insulin Sensitivity via PPAR-γ in Mice Fed a High-fat Diet. Nutr Res Pract. 2012;6(4):322–7
  24. Chung IM, Kim EH, Yeo MA, Kim SJ, Seo MC, Moon HI. Antidiabetic Effects of three Korean Sorghum Phenolic Extracts in Normal and Streptozotocin-induced Diabetic Rats. Food Research International. 2011;44:127–32
  25. Ghasemi A, Khalifi S, Jedi S. Streptozotocin-Nicotinamide-Induced Rat Model of Type 2 Diabetes. Acta Physiologica Hungarica. 2014;101(4):408– 20
  26. Wolfensohn S, LLoyd M. Handbook of Laboratory Animal Management and Welfare. 4th ed. West Sussex, UK: John Wiley & Sons, Ltd; 2013
  27. Kishore L, Kajal A, Kaur N. Role of Nicotinamide in Streptozotocin Induced Diabetes in Animal Models. J Endocrinol Thyroid Res. 2017;2(1)
  28. Szkudelski T. Streptozotocin-Nicotinamide-Induced Diabetes in Rat. Characteristics of the Experimental Model. Experimental Bioogy and Medicine. 2012;237:481–90
  29. Nagarchi K, Ahmed S, Sabus A, Saheb SH. Effect of Streptozotocin on Glucose Levels in Albino Wistar Rats. J Pharm Sci & Res. 2015;7(2):67–9
  30. Aini N. Teknologi Fermentasi pada Tepung Jagung. Graha Ilmu; 2013
  31. Henry CJK, Thondre PS. The Glycemix Index: Concept, Recent Developments, and Its Impact on Diabetes and Obesity. In: Access not Excess: The Search for Better Nutrition. Smith-Gordon; 2011. p. 154–75
  32. Nelms M, Sucher KP, Roth SL. Nutrition Theraphy and Pathophysiology. 2nd ed. Belmont, CA, USA: Wadsworth Cengage Learning; 2011
  33. Russell WR, Baka A, Bjorck I, Delzenne N, Gao D, Griffiths HR, et al. Impact Diet Composition on Blood Glucose Regulation. Critical Reviews in Food Science and Nutrition. 2016;56(4):541–90
  34. Yasmina AR, Probsari E. Perbedaan Kadar Glukosa Darah Puasa Sebelum dan Setelah Pemberian Sari Bengkuang (Pachyrrhizuserosus) pada Wanita Prediabetes. Journal of Nutrition College.2014;3(4):440–6
  35. McRorie JW, Mc Keown NM. Understanding the Physics of Functional Fibers in Gastrointestinal Tract: An Evidence-Based Approach to Resolving Enduring Misconceptions about Insoluble and Soluble Fiber. Journal of the Academy of Nutrition and Dietetics. 2017;117(2)
  36. Abutair AS, Naser IA, Hamed AT. Soluble Fibers from Psyllium Improve Glycemic Response and Body Weight Among Diabetes Type 2 Patients (Randomized Control Trial). Nutrition Journal. 2016;15(86)
  37. Medhe SV, Medhe MV. Effect of Fiber Suplementation on Blood Glucose Level of NIDDM Subjects. International Journal of Bioassays. 2013;2(4):705–7
  38. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker BM. The Role of Short-chain Fatty Acids in the Interplay between Diet, Gut Microbiota, and Host Energy Metabolism. J Lipid Res. 2013;54(9):2325–40
  39. Yeo R, Sawdon M. Hormonal Control of Metabolism: Regulation of Plasma Glucose. Anaesthesia & Intensive Care Medicine. 2013;14(7):296–300
  40. Coughlan KA, Valentine RJ, Ruderman NB, Saha AK. AMPK activation: a Therapeutic Target for Type 2 Diabetes? Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 2014;7:241–53
  41. Kim H-S, Hwang Y-C, Koo S-H, Park K-S, Lee M-S, Kim K-W, et al. PPAR-Gamma Activation Increases Insulin Secretion through the Up- regulation of the Free Fatty Acid Receptor GPR40 in Pancreatic Beta-Cells. PLoS ONE. 2013;8(1)
  42. Gropper SS, Smith JL, Groff JL. Advanced Nutrition and Human Metabolism. 5th ed. Wadsworth Cengage Learning; 2009
  43. Marks DB, Marks AD, Smith C. Biokimia Kedokteran Dasar: Sebuah Pendekatan Klinis. Jakarta: EGC; 2000

Last update:

No citation recorded.

Last update:

No citation recorded.