skip to main content

PERAN SENYAWA BIOAKTIF RUMPUT LAUT TERHADAP RESPON GLUKOSA DARAH PADA INDIVIDU OBESITAS: LITERATUR REVIEW

Departemen Ilmu Gizi, Fakultas Kedokteran, Universitas Diponegoro, Jawa Tengah, Indonesia

Received: 3 Mar 2024; Revised: 17 Jul 2024; Accepted: 19 Jul 2024; Available online: 31 Jul 2024; Published: 31 Jul 2024.

Citation Format:
Abstract

ABSTRACT

Obesity is considered as a risk factor for insulin resistance and hyperglycemia. Strategies for glycemic control are necessary in order to prevent obese individuals from developing diabetes mellitus. Over the last few years, research regarding natural products obtained from seaweed has increased since it contains various bioactive compounds; such as, polysaccharides, polyphenols, carotenoids, fucoxanthin and others. These compounds appear to have various biological effects which are beneficial to health; such as, antioxidant, anti-inflammatory, antimicrobial and anti-diabetic activities. In addition, the low energy content of seaweed and various bioactive compounds can prevent diabetes through various mechanisms. This narrative review provides summary of the various bioactive compounds contained in seaweed and provides a summary regarding the mechanisms of seaweed bioactive compounds on blood glucose responses in obese individuals.

Keywords: Seaweed; bioactive compounds; blood glucose; obesity

 

                                                                          ABSTRAK

Obesitas merupakan faktor risiko terjadinya resistensi insulin dan hiperglikemia. Kontrol glikemik sangat penting untuk menjaga individu obesitas agar tidak sampai pada kondisi diabetes mellitus, sehingga diperlukan strategi untuk mengontrol glikemik. Selama beberapa tahun terakhir, penelitian terkait produk alami yang diperoleh dari rumput laut semakin meningkat karena mengandung berbagai senyawa bioaktif seperti polisakarida, polifenol, karotenoid, fukosantin dan lainnya. Senyawa tersebut tampaknya memiliki berbagai efek biologis yang bermanfaat bagi kesehatan seperti aktivitas antioksidan, antiinflamasi, antimikroba, dan antidiabetes. Selain itu, kandungan energi yang rendah pada rumput laut dan berbagai senyawa bioaktif dapat mencegah diabetes melalui berbagai mekanisme. Tinjauan naratif ini merangkum berbagai kandungan senyawa bioaktif rumput laut dan memberikan ringkasan terkait mekanisme senyawa biaktif rumput laut terhadap respon glukosa darah pada individu obesitas.

Kata Kunci: Rumput laut; senyawa bioaktif; glukosa darah; obesitas


Fulltext View|Download
Keywords: Rumput laut; senyawa bioaktif; glukosa darah; obesitas

Article Metrics:

  1. Wondmkun YT. Obesity, insulin resistance, and type 2 diabetes: Associations and therapeutic implications. Diabetes, Metab Syndr Obes. 2020;13:3611–6. doi: 10.2147/DMSO.S275898
  2. Gómez-Hernández A, Beneit N, Díaz-Castroverde S, Escribano Ó. Differential Role of Adipose Tissues in Obesity and Related Metabolic and Vascular Complications. Int J Endocrinol. 2016;(1216783):1–15. doi: 10.1155/2016/1216783
  3. Jiao P, Jie M, Bin F, J. Alan D, Y. Eugene C, Weiqun Y, et al. FFA‐Induced Adipocyte Inflammation and Insulin Resistance: Involvement of ER Stress and IKK. Obesity; 2011. p. 483–91. doi: 10.1038/oby.2010.200
  4. Kim Y bum, Ribeiro RT. Risk of postprandial insulin resistance : The liver/ vagus rapport. 2015;15(1):67–77. doi: 10.1007/s11154-013-9281-5
  5. Alodhayani A, Almutairi KM, Vinluan JM, Almigbal TH, Alonazi WB, Ali Batais M, et al. Association between self-care management practices and glycemic control of patients with type 2 diabetes mellitus in Saud Arabia: A cross–sectional study. Saudi J Biol Sci. 2021;28(4):2460–5. doi: 10.1016/j.sjbs.2021.01.047
  6. Pasmans K, Meex RCR, van Loon LJC, Blaak EE. Nutritional strategies to attenuate postprandial glycemic response. Obes Rev. 2022;23(9):1–11. doi: 10.1111/obr.13486
  7. Mishra A, Jha S. In vitro postprandial glucose lowering effects of dietary fibers isolated from tamarindus indica and cassia fistula seeds. Vol. 6, American Journal of Food Technology. 2011. p. 435–40. doi: 10.3923/ajft.2011.435.440
  8. Yalcin T, Al A, Rakicioǧlu N. The effects of meal glycemic load on blood glucose levels of adults with different body mass indexes. Indian J Endocrinol Metab. 2017;21(1):71–5. doi: 10.4103/2230-8210.195995
  9. Wang K, Li M, Qianyun H, Rao F, Yuanying N. Inhibition of α-amylase activity by insoluble and soluble fiber from kiwifruit (Actinidia deliciosa). Food Bioscience; 2021; (42) 1–8. doi: 10.1016/j.fbio.2021.101057
  10. Goff HD, Repin N, Fabek H, El Khoury D, Gidley MJ. Dietary fibre for glycaemia control: Towards a mechanistic understanding. Bioact Carbohydrates Diet Fibre. 2018;14:39–53. doi: 10.1016/j.bcdf.2017.07.005
  11. Winham DM, Hutchins AM, Thompson S V. Glycemic response to black beans and chickpeas as part of a rice meal: A randomized cross-over trial. Nutrients. 2017;9(10). doi: 10.3390/nu9101095
  12. Pletsch EA, Hayes AMR, Chegeni M, Hamaker BR. Matched whole grain wheat and refined wheat milled products do not differ in glycemic response or gastric emptying in a randomized, crossover trial. Am J Clin Nutr. 2022;115(4):1013–26. doi: 10.1093/ajcn/nqab434
  13. Jiménez-Domínguez G, Ble-Castillo JL, Aparicio-Trápala MA, Juárez-Rojop IE, Tovilla-Zárate CA, Ble-Castillo DJ, et al. Effects of acute ingestion of native banana starch on glycemic response evaluated by continuous glucose monitoring in obese and lean subjects. Int J Environ Res Public Health. 2015;12(7):7491–505. doi: 10.3390/ijerph120707491
  14. Castro-Acosta ML, Stone SG, Mok JE, Mhajan RK, Fu CI, Lenihan-Geels GN, et al. Apple and blackcurrant polyphenol-rich drinks decrease postprandial glucose, insulin and incretin response to a high-carbohydrate meal in healthy men and women. J Nutrient Biochemical. 2017;49:53–62. doi: 10.1016/j.jnutbio.2017.07.013
  15. Olsson J, Toth GB, Albers E. Biochemical composition of red, green and brown seaweeds on the Swedish west coast. J Appl Phycol. 2020;32(5):3305–17. doi: 10.1007/s10811-020-02145-w
  16. Shannon E, Conlon M, Hayes M. The Prebiotic Effect of Australian Seaweeds on Commensal Bacteria and Short Chain Fatty Acid Production in a Simulated Gut Model. Nutrients. 2022;14(10):1–30. doi: 10.3390/nu14102163
  17. Vodouhè M, Marois J, Guay V, Leblanc N, Weisnagel SJ, Bilodeau JF, et al. Marginal Impact of Brown Seaweed Ascophyllum nodosum and Fucus vesiculosus Extract on Metabolic and Inflammatory Response in Overweight and Obese Prediabetic Subjects. Mar Drugs. 2022;20(3). doi: 10.3390/md20030174
  18. Yuan Y, Zheng Y, Zhou J, Geng Y, Zou P, Li Y, et al. Polyphenol-Rich Extracts from Brown Macroalgae Lessonia trabeculate Attenuate Hyperglycemia and Modulate Gut Microbiota in High-Fat Diet and Streptozotocin-Induced Diabetic Rats. J Agric Food Chem. 2019;67(45):12472–80. doi: 10.1021/acs.jafc.9b05118
  19. Zaharudin N, Tullin M, Pekmez CT, Sloth JJ, Rasmussen RR, Dragsted LO. Effects of brown seaweeds on postprandial glucose, insulin and appetite in humans – A randomized, 3-way, blinded, cross-over meal study. Clinical Nutrition. 2021;40(3):830–8. doi: 10.1016/j.clnu.2020.08.027
  20. Almutairi MG, Aldubayan K, Molla H. Effect of seaweed (Ecklonia cava extract) on blood glucose and insulin level on prediabetic patients: A double-blind randomized controlled trial. Food Sci Nutr. 2022;11(2):983–90. doi: 10.1002/fsn3.3133
  21. Carpena M, Garcia-Perez P, Garcia-Oliveira P, Chamorro F, Otero P, Lourenço-Lopes C, et al. Biological properties and potential of compounds extracted from red seaweeds. Vol. 22, Phytochemistry Reviews. 2022. 1509–1540 p. doi: 10.1007/s11101-022-09826-z
  22. Zhao C, Yang C, Liu B, Lin L, Sarker SD, Nahar L, et al. Bioactive compounds from marine macroalgae and their hypoglycemic benefits. Trends Food Sci Technol. 2018;72:1–36. doi: 10.1016/j.tifs.2017.12.001
  23. El-Beltagi HS, Mohamed AA, Mohamed HI, Ramadan KMA, Barqawi AA, Mansour AT. Phytochemical and Potential Properties of Seaweeds and Their Recent Applications: A Review. Mar Drugs. 2022;20(6). doi: 10.3390/md20060342
  24. Moreira APB, Texeira TFS, Ferreira AB, Do Carmo Gouveia Peluzio M, De Cássia Gonçalves Alfenas R. Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia. Br J Nutr. 2012;108(5):801–9. doi: 10.1017/S0007114512001213
  25. Asadi A, Shadab Mehr N, Mohamadi MH, Shokri F, Heidary M, Sadeghifard N, et al. Obesity and gut–microbiota–brain axis: A narrative review. J Clin Lab Anal. 2022;36(5):1–11. doi: 10.1002/jcla.24420
  26. Sarkar D, Christopher A, Shetty K. Phenolic Bioactives From Plant-Based Foods for Glycemic Control. Frontiers in Endocrinology. 2022;12(January):1–24. doi: 10.3389/fendo.2021.727503
  27. Hentati F, Tounsi L, Djomdi D, Pierre G, Delattre C, Ursu AV, et al. Bioactive polysaccharides from seaweeds. Molecules. 2020;25(14):1–29. doi: 10.3390/molecules25143152
  28. Holdt SL, Kraan S. Bioactive compounds in seaweed: Functional food applications and legislation. J Appl Phycol. 2011;23(3):543–97. doi: 10.1007/s10811-010-9632-5
  29. Gabbia D, Dall’Acqua S, Di Gangi IM, Bogialli S, Caputi V, Albertoni L, et al. The Phytocomplex from Fucus vesiculosus and ascophyllum nodosum controls postprandial plasma glucose levels: An in vitro and in Vivo study in a mouse model of NASH. Mar Drugs. 2017;15(2):1–12. doi: 10.3390/md15020041
  30. Peng Y, Hu J, Yang B, Lin X ping, Zhou XF, Yang XW, et al. Chemical composition of Seaweed [Internet]. Handbook of Food Science, Technology, and Engineering - 4 Volume Set. Elsevier Inc.; 2015. 525–531 p. doi: 10.1016/B978-0-12-418697-2/00005-2
  31. Vaz S, Moreira JB, Morais MG De, Alberto J, Costa V. Microalgae as a new source of bioactive compounds in food supplements. Curr Opin Food Science. 2016;7:73–7. doi: 10.1016/j.cofs.2015.12.006
  32. Sudirman S, Hsu YH, He JL, Kong ZL. Dietary polysaccharide-rich extract from Eucheuma cottonii modulates the inflammatory response and suppresses colonic injury on dextran sulfate sodiuminduced colitis in mice. PLoS One. 2018;13(10):1–15. doi: 10.1371/journal.pone.0205252
  33. Hamed I, Özogul F, Özogul Y, Regenstein JM. Marine Bioactive Compounds and Their Health Benefits: A Review. Compr Rev Food Sci Food Saf. 2015;14(4):446–65. doi: 10.1111/1541-4337.12136
  34. Siew Ling H, Lim JY, Ong WT, Wong CL. Agar from Malaysian Red Seaweed as Ptential Material for Synsthesis of Bioplastic Film. J Eng Sci Technol. 2016;(December):1–15
  35. Cherry P, O’hara C, Magee PJ, Mcsorley EM, Allsopp PJ. Risks and benefits of consuming edible seaweeds. Nutr Rev. 2019;77(5):307–29. doi: 10.1093/nutrit/nuy066
  36. Pérez MJ, Falqué E, Domínguez H. Antimicrobial action of compounds from marine seaweed. Mar Drugs. 2016;14(3):1–38. doi: 10.3390/md14030052
  37. Jensen MG, Kristensen M, Astrup A. Effect of alginate supplementation on weight loss in obese subjects completing a 12-wk energy-restricted diet: A randomized controlled trial. Am J Clin Nutr. 2012;96(1):5–13. doi: 10.3945/ajcn.111.025312
  38. Remya RR, Samrot A V, Kumar SS, Mohanavel V, Karthick A, Chinnaiyan VK, et al. Bioactive Potential of Brown Algae. Adsorpt Sci Technol. 2022;2022:1–13. doi: 10.1155/2022/9104835
  39. Palanisamy S, Vinosha M, Marudhupandi T, Rajasekar P, Prabhu NM. Isolation of fucoidan from Sargassum polycystum brown algae: Structural characterization, in vitro antioxidant and anticancer activity. Int J Biol Macromolecular. 2017;102:405–12. doi: 10.1016/j.ijbiomac.2017.03.182
  40. Oliyaei N, Moosavi- M, Tamaddon AM. Antidiabetic effect of fucoxanthin extracted from Sargassum angustifolium on streptozotocin- ­ induced type 2 diabetic mice. 2021;(November 2020):3521–9. doi: 10.1002/fsn3.2301
  41. Wright CM, Bezabhe W, Fitton JH, Stringer DN, Bereznicki LRE, Peterson GM. Effect of a Fucoidan Extract on Insulin Resistance and Cardiometabolic Markers in Obese, Nondiabetic Subjects: A Randomized, Controlled Trial. J Altern Complement Med. 2019;25(3):346–52. doi: 10.1089/acm.2018.0189
  42. Murray M, Dordevic AL, Cox K, Scholey A, Ryan L, Bonham MP. Twelve weeks’ treatment with a polyphenol-rich seaweed extract increased HDL cholesterol with no change in other biomarkers of chronic disease risk in overweight adults: A placebo-controlled randomized trial. J Nutr Biochem. 2021;96:108777. doi: 10.1016/j.jnutbio.2021.108777
  43. Agregán R, Munekata PES, Franco D, Carballo J, Lorenzo JM. Phenolic compounds from three brown seaweed species using LC-DAD–ESI-MS/MS. Food Res Int. 2017;99(3):979–85. doi: 10.1016/j.foodres.2017.03.043
  44. Yang Y in, Jung S hyun, Lee K tae, Choi J hye. 8 , 8 ′ -Bieckol , isolated from edible brown algae , exerts its anti-in fl ammatory effects through inhibition of NF- κ B signaling and ROS production in LPS-stimulated macrophages. Int Immunopharmacol. 2014;23(2):460–8. doi: 10.1016/j.intimp.2014.09.019
  45. Almeida J, Ferreira T, Santos S, Pires MJ, Gil RM, Medeiros R, et al. The Red Seaweed Grateloupia turuturu Prevents Epidermal Dysplasia in HPV16-Transgenic Mice. 2021;1–11. doi: 10.3390/nu13124529
  46. Makkar F, Chakraborty K. Antidiabetic and anti-inflammatory potential of sulphated polygalactans from red seaweeds Kappaphycus alvarezii and Gracilaria opuntia. Int J Food Prop [Internet]. 2017;20(6):1326–37. doi: 10.1080/10942912.2016.1209216
  47. Echave J, Otero P, Garcia-oliveira P, Munekata PES, Pateiro M, Lorenzo JM, et al. Seaweed-Derived Proteins and Peptides : Promising Marine Bioactives. antioxidants. 2022;11(1):1–26. doi: 10.3390/antiox11010176
  48. Corino C, Giancamillo A Di, Modina SC. Prebiotic Effects of Seaweed Polysaccharides in Pigs. Animals. 2021;11(6):1–15. doi: /10.3390/ani11061573
  49. Usov AI. Polysaccharides of the red algae. 1st ed. Vol. 65, Advances in Carbohydrate Chemistry and Biochemistry. Elsevier Inc.; 2011. 115–217 p. doi: 10.1016/B978-0-12-385520-6.00004-2
  50. Roach LA, Meyer BJ, Fitton JH, Winberg P. Improved Plasma Lipids, Anti-Inflammatory Activity, and Microbiome Shifts in Overweight Participants: Two Clinical Studies on Oral Supplementation with Algal Sulfated Polysaccharide. Mar Drugs. 2022;20(8). doi: 10.3390/md20080500
  51. Xu J, Liao W, Liu Y, Guo Y, Jiang S, Zhao C. An overview on the nutritional and bioactive components of green seaweeds. Food Prod Process Nutr. 2023;5(1). doi: 10.1186/s43014-023-00132-5
  52. Kendel M, Wielgosz-collin G, Bertrand S, Roussakis C, Bourgougnon N, Bedoux G. Lipid Composition, Fatty Acids and Sterols in the Seaweeds Ulva armoricana, and Solieria chordalis from Brittany (France): An Analysis from Nutritional, Chemotaxonomic, and Antiproliferative Activity Perspectives. Mar Drugs. 2015;13(9):5606–28. doi: 10.3390/md13095606
  53. Yu AY, Li Y, Du C, Mou H, Wang P. Compositional and structural characteristics of sulfated polysaccharide from Enteromorpha prolifera. Carbohydr Polym. 2017;165:221–8. doi: 10.1016/j.carbpol.2017.02.011
  54. Li M, Feng H, Ouyang X, Ling J. Determination of Fucoxanthin in Bloom-Forming Macroalgae by HPLC – UV. J ofChromatographic Sci. 2021;59(10):978–82. doi: 10.1093/chromsci/bmab043
  55. Gómez-Guzmán M, Rodríguez-Nogales A, Algieri F, Gálvez J. Potential role of seaweed polyphenols in cardiovascular-associated disorders. Mar Drugs. 2018;16(8):1–21. doi: 10.3390/md16080250
  56. Santos SAO, Félix R, Pais ACS, Rocha SM, Silvestre AJD. The quest for phenolic compounds from macroalgae: A review of extraction and identification methodologies. Biomolecules. 2019;9(12):1–56. doi: 10.3390/biom9120847
  57. Gammone MA, Orazio ND. Anti-Obesity Activity of the Marine Carotenoid Fucoxanthin. 2015;2196–214. doi: 10.3390/md13042196
  58. Lopes D, Melo T, Rey F, Meneses J, Monteiro FL, Helguero LA, et al. Valuing Bioactive Lipids from Green, Red and Brown Macroalgae from Aquaculture, to Foster Functionality and Biotechnological Applications. Molecules. 2020;25(17):1–18. doi: 10.3390/molecules25173883
  59. Biris-Dorhoi ES, Michiu D, Pop CR, Rotar AM, Tofana M, Pop OL, et al. Macroalgae—A sustainable source of chemical compounds with biological activities. Nutrients. 2020;12(10):1–23. doi: 10.3390/nu12103085
  60. Maliki IM, Misson M, Teoh PL, Rodrigues KF, Yong WTL. Production of Lectins from Marine Algae: Current Status, Challenges, and Opportunities for Non-Destructive Extraction. Mar Drugs. 2022;20(2). doi: 10.3390/md20020102
  61. Dawood Shah M, Seelan Sathiya Seelan J, Iqbal M. Phytochemical investigation and antioxidant activities of methanol extract, methanol fractions and essential oil of Dillenia suffruticosa leaves. Arab J Chem. 2020;13(9):7170–82. doi: 10.1016/j.arabjc.2020.07.022
  62. Lee SH, Jeon YJ. Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms. Fitoterapia. 2013;86(1):129–36. doi: 10.1016/j.fitote.2013.02.013
  63. Shannon E, Conlon M, Hayes M. Seaweed components as potential modulators of the gut microbiota. Mar Drugs. 2021;19(7):1–50. doi: 10.3390/md19070358
  64. Jorsal T, Rungby J, Knop FK, Vilsbøll T. GLP-1 and Amylin in the Treatment of Obesity. Curr Diab Rep. 2016;16(1):1–7. doi: 10.1007/s11892-015-0693-3
  65. Hernández-Corona DM, Martínez-Abundis E, González-Ortiz M. Effect of Fucoidan administration on insulin secretion and insulin resistance in overweight or obese adults. J Med Food. 2014;17(7):830–2. doi: 10.1089/jmf.2013.0053
  66. Mikami N, Hosokawa M, Miyashita K, Sohma H, Ito YM, Kokai Y. Reduction of HbA1c levels by fucoxanthin-enriched akamoku oil possibly involves the thrifty allele of uncoupling protein 1 (UCP1): A randomised controlled trial in normal-weight and obese Japanese adults. Sapporo Med J. 2017;86(1–6):108–9. doi: 10.1017/jns.2017.1
  67. Elidottir A, Sveinsdottir K, Ingadottir B, Geirsdottir O, Jonsson P, Rothenberg E, et al. Seaweed extract improves carbohydrate metabolism in overweight and obese adults. Curr Nutr Food Sci. 2021;17(2):216–24
  68. Kim CO, Kim YN, Lee DC. Effects of Gelidium elegans on weight and fat mass reduction and obesity biomarkers in overweight or obese adults: A randomized double-blinded study. Nutrients. 2019;11(7). doi: 10.3390/nu11071513
  69. Idota Y, Kato T, Shiragami K, Koike M, Yokoyama A, Takahashi H, et al. Mechanism of suppression of blood glucose level by calcium alginate in rats. Biol Pharm Bull. 2018;41(9):1362–6. doi: 10.1248/bpb.b18-00155
  70. Ford H, Frost G. Session 3 (Joint with the British Dietetic Association): Management of obesity: Glycaemic index, appetite and body weight. Proc Nutr Soc. 2010;69(2):199–203. doi: 10.1017/S0029665110000091
  71. Peters HPF, Koppert RJ, Boers HM, Strom A, Melnikov SM, Haddeman E, et al. Dose‐Dependent Suppression of Hunger by a Specific Alginate in a Low‐Viscosity Drink Formulation. Obesity. 2011;19:1171–6. doi: 10.1038/oby.2011.63
  72. Brownlee IA, Allen A, Pearson JP, Dettmar PW, Havler ME, Atherton MR, et al. Alginate as a source of dietary fiber. Crit Rev Food Sci Nutr. 2005;45(6):497–510. doi: 10.1080/10408390500285673
  73. Pozharitskaya ON, Obluchinskaya ED, Shikov AN. Mechanisms of bioactivities of fucoidan from the brown seaweed fucus vesiculosus L. Of the barents sea. Mar Drugs. 2020;18(5):1–17. doi: 10.3390/md18050275
  74. Cani PD, Plovier H, Van Hul M, Geurts L, Delzenne NM, Druart C, et al. Endocannabinoids-at the crossroads between the gut microbiota and host metabolism. Nat Rev Endocrinol. 2016;12(3):133–43. doi: 10.1038/nrendo.2015.211
  75. Shin HC, Kim SH, Park Y, Lee BH, Hwang HJ. Effects of 12-week oral supplementation of Ecklonia cava polyphenols on anthropometric and blood lipid parameters in overweight Korean individuals: A double-blind randomized clinical trial. Phyther Res. 2012;26(3):363–8. doi: 10.1002/ptr.3559
  76. Khalilpourfarshbafi M, Gholami K, Murugan DD, Abdul Sattar MZ, Abdullah NA. Differential effects of dietary flavonoids on adipogenesis. Eur J Nutr. 2019;58(1):5–25. doi: 10.1007/s00394-018-1663-8
  77. Al-Ishaq RK, Abotaleb M, Kubatka P, Kajo K, Büsselberg D. Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels. Biomolecules. 2019;9(9). doi: 10.3390/biom9090430
  78. Ghorbani A. Mechanisms of antidiabetic effects of flavonoid rutin. Biomed Pharmacother. 2017;96(September):305–12. doi: 10.1016/j.biopha.2017.10.001
  79. Agrawal YO, Sharma PK, Shrivastava B, Ojha S, Upadhya HM, Arya DS, et al. Hesperidin produces cardioprotective activity via PPAR-γ pathway in ischemic heart disease model in diabetic rats. PLoS One. 2014;9(11):1–13. doi: 10.1371/journal.pone.0111212
  80. Jadhav R, Puchchakayala G. Hypoglycemic and antidiabetic activity of flavonoids: Boswellic acid, Ellagic acid, Quercetin, Rutin on streptozotocin-nicotinamide induced type 2 diabetic rats. Int J Pharm Pharm Sci. 2012;4(2):251–6
  81. Pangestuti R, Kim SK. Biological activitieshealth benefit effects of natural pigments derived from marine algae. J Funct Foods. 2011;3(4):255–66. doi: 10.1016/j.jff.2011.07.001
  82. Maeda H. Nutraceutic cts of Fucoxanthin for Obesity and Diabetes Therapy: A Review. J Oleo Sci. 2015;132(2):1al Effe25–32. doi: 10.5650/jos.ess14226

Last update:

No citation recorded.

Last update:

No citation recorded.