skip to main content

Analisis Pengaruh Stern Flap terhadap Hambatan Total pada Double Stepped Planing Hull Menggunakan Metode Computational Fluid Dynamics

*Nathanael Petra Ardhana  -  Departemen Teknik Perkapalan, Fakultas Teknik, Universitas Diponegoro., Indonesia
Kiryanto Kiryanto  -  Departemen Teknik Perkapalan, Fakultas Teknik, Universitas Diponegoro., Indonesia
Ari Wibawa Budi Santosa  -  Departemen Teknik Perkapalan, Fakultas Teknik, Universitas Diponegoro., Indonesia

Citation Format:
Abstract
Kapal cepat menggunakan bentuk planing hull yang dirancang mencapai kecepatan tinggi di atas permukaan air. Saat kondisi planing, tekanan hidrodinamik menopang berat kapal dan menghasilkan gaya angkat yang mengurangi wetted surface area. Untuk memaksimalkan pemanfaatannya, diperlukan usaha peningkatan performa planing hull, salah satunya dengan penambahan appendage seperti stern flap. Penelitian ini bertujuan untuk mengetahui pengaruh stern flap, dengan variasi panjang chord flap dan sudut flap, terhadap hambatan total, trim, dan sinkage pada model double stepped planing hull menggunakan metode Computational Fluid Dynamics. Finite Volume Method dengan persamaan Reynolds-Averaged Navier-Stokes dan model turbulensi k-ε untuk memprediksi aliran turbulensi di sekitar kapal, serta Volume of Fluid untuk memodelkan free surface. Hasil penelitian menunjukkan, Flap A dengan chord 0.5% Lpp dan sudut 0° mengalami pengurangan hambatan total terbesar, sebesar 8.97% pada Fn 2.07. Sebaliknya, Flap D1 dengan chord 2.0%  Lpp dan sudut 1° meningkatkan hambatan total terbesar, sebesar 7.73% di Fn 1.61. Flap C dengan chord flap 1.5% Lpp dan sudut 0° menurunkan sudut trim di semua kecepatan dengan rata-rata penurunan sebesar 3.34% sekaligus mengurangi hambatan total dengan pengurangan rata-rata sebesar 0.91%. Perubahan nilai sinkage menunjukkan pola yang sama dengan perubahan sudut trim.
Fulltext
Keywords: Planing Hull; Stern Flap; Hambatan; CFD
  1. R. Yousefi, R. Shafaghat, and M. Shakeri, “Hydrodynamic Analysis Techniques for High-Speed Planing Hulls,” 2013. doi: 10.1016/j.apor.2013.05.004
  2. D. J. Kim, S. Y. Kim, Y. J. You, K. P. Rhee, S. H. Kim, and Y. G. Kim, “Design of High-Speed Planing Hulls for the Improvement of Resistance and Seakeeping Performance,” International Journal of Naval Architecture and Ocean Engineering, vol. 5, no. 1, pp. 161–177, 2013, doi: 10.2478/ijnaoe-2013-0124
  3. D. Savitsky and M. Morabito, “Surface Wave Contours Associated with the Forebody Wake of Stepped Planing Hulls,” Marine Technology and SNAME news, vol. 47, no. 01, pp. 1-16., 2010
  4. D. J. Taunton, D. A. Hudson, and R. A. Shenoi, “Characteristics of a Series of High-Speed Hard Chine Planing Hulls: Part 1 - Performance in Calm Water,” International Journal of Small Craft Technology, vol. 152, no. 2, 2010, doi: 10.3940/rina.ijsct.2010.b2.96
  5. C. Dominic S, “Stern Flaps: A Chronicle of Success at Sea (1989-2002),” SNAME Innovations in Marine Transportation, 2002
  6. U. Budiarto, S. Samuel, A. A. Wijaya, S. Yulianti, Kiryanto, and M. Iqbal, “Application of Stern Flaps on Planing Hulls to Improve Resistance,” International Journal of Engineering Transactions B: Applications, vol. 34, no. 5, pp. 2313–2320, 2021, doi: 10.5829/ije.2022.35.12c.06
  7. K. wei Song, C. yu Guo, C. Wang, C. Sun, P. Li, and W. Wang, “Numerical Analysis of the Effects of Stern Flaps on Ship Resistance and Propulsion Performance,” Ocean Engineering, vol. 193, 2019, doi: 10.1016/j.oceaneng.2019.106621
  8. P. Manik, G. Rindo, H. Yudo, and E. E. Sinaga, “Analysis of the Effect of Addition of Stern Flaps on the Performance of 60 m Fast Boat,” IOP Conf Ser Mater Sci Eng, vol. 1034, no. 1, pp. 12–32, 2021, doi: 10.1088/1757-899x/1034/1/012032
  9. J. Zou, S. Lu, Y. Jiang, H. Sun, and Z. Li, “Experimental and Numerical Research on the Influence of Stern Flap Mounting Angle on the Hydrodynamic Performance of Double-Stepped Planing Hulls,” J Mar Sci Eng, vol. 7, no. 10, 2019, doi: 10.3390/jmse7100346
  10. D. J. Taunton, D. A. Hudson, and R. A. Shenoi, “Characteristics of a series of high speed hard chine planing hulls-Part 1: Performance in calm water,” Int. J. Small Craft Technol, 2011
  11. G. Karafiath and D. Cusanelli, “Professional Boatbuilder,” Carl Carmer, Brooklin, pp. 81–87, 2001. [Online]. Available: www.proboat.com
  12. J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics, Third Edition. Springer, 2002
  13. S. Mancini, “The Problem of Verification and Validation Processes of CFD Simulations of Planing Hulls,” Università degli Studi di Napoli Federico II, Napoli, 2015
  14. ITTC, “Practical Guidelines for Ship CFD Applications,” ITTC - Recommended Procedures and Guidelines, pp. 1–20, 2014
  15. ITTC, “Practical Guidelines for Ship CFD Applications,” ITTC - Recommended Procedures and Guidelines, pp. 1–18, 2011
  16. Samuel, D. J. Kim, A. Fathuddiin, and A. F. Zakki, “A Numerical Ventilation Problem on Fridsma Hull Form Using an Overset Grid System,” IOP Conf Ser Mater Sci Eng, vol. 1096, no. 1, 2021, doi: 10.1088/1757-899x/1096/1/012041
  17. S. T. G. Veysi, M. Bakhtiari, H. Ghassemi, and M. Ghiasi, “Toward Numerical Modeling of Stepped and Non-Stepped Planing Hulls,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 37, no. 6, pp. 1635–1645, 2015, doi: 10.1007/s40430-014-0266-4
  18. M. Bakhtiari, S. Veysi, and H. Ghassemi, “Numerical Modeling of Stepped Planing Hulls in Calm Water,” International Journal of Engineering, Transactions B: Applications, vol. 29, no. 2, pp. 236–245, 2016, doi: 10.5829/idosi.ije.2016.29.02b.13
  19. A. Trimulyono, M. L. Hakim, C. Ardhan, S. T. P. Ahmad, T. Tuswan, and A. W. B. Santosa, “Analysis of the Effect of Double Step Position on Planing Hull Performance,” Brodogradnja, vol. 74, no. 4, pp. 41–72, 2023, doi: 10.21278/brod74403
  20. O. Yaakob, S. Shamsuddin, and K. Kho King, “Stern Flap for Resistance Reduction of Planing Hull Craft: A Case Study with a Fast Crew Boat Model,” Jurnal Teknologi, Universiti Teknologi Malaysia, pp. 43–52, 2004

Last update:

No citation recorded.

Last update:

No citation recorded.