skip to main content

Effect of Melinjo Seed Extract on GSH Levels of Hyperuricemic Wistar Rats

Ardhana Fadhiilah  -  Undergraduate Program, , Indonesia
Endang Mahati  -  Department of Pharmacology,, Indonesia
Noor Wijayahadi  -  Department of Pharmacology,
*Yora Nindita orcid scopus publons  -  Department of Pharmacology,, Indonesia

Citation Format:

Background: Hyperuricemia is a condition where uric acid levels are above normal. The biosynthesis of uric acid by the enzyme xanthine oxidase (XO) produces free radicals that cause oxidative stress. Oxidative stress lowers cellular GSH levels. Gnetum gnemon L. or melinjo seeds contain stilbenoids and flavonoids that can act as natural XO inhibitors. Objective: To study the effect of melinjo seed extract on GSH levels.

Methods: This research was a true experimental with pre and post-test controlled group design. Thirty six male wistar rats were randomly divided into 6 groups consisting of a healthy control (KS), negative control (K1), positive control (K2), treatment 1 (P1) extract 250 mg/kgBW, treatment 2 (P2) extract 500 mg/kgBW, treatment 3 (P3) extract 2000 mg/kgBW. Hyperuricemia was induced by the administration of Maggie® block broth and potassium oxonate. Measurement was carried out on the 21st and 35th day of treatment, then analyzed using Paired-Sample T Test, continued with One-Way Anova test and Post Hoc LSD test. Results: Administration of melinjo seed extract at P1, P2, and P3 significantly increased GSH levels (P<0.05) from 1.23±0.10 to 1.55±0.16; 1.22±0.06 to 1.73±0.16; and 1.21±0.08 to 1.88±0.08. There was significant difference between the three doses with a dose of 250 mg/kgBW melinjo seed extract being more effective than allopurinol 90 mg/kgBW. Conclusion: Melinjo seed extract could increase GSH levels with the most effective dose of 250 mg/kgBB.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
Ethical Clearance
Type Research Instrument
  Download (529KB)    Indexing metadata
Keywords: Gnetum gnemon, GSH, hyperuricemia, Melinjo seeds

Article Metrics:

  2. Zimmerman. Medicine and Health Rhode Island: Hyperuricemia & Gout. Rhode Isl Med Soc. 2009;92(11)
  3. Wang Q, Wen X, Kong J. Recent Progress on Uric Acid Detection: A Review. Crit Rev Anal Chem 2020;50(4):359–75. doi: 10.1080/10408347.2019.1637711
  4. Sholihah FM. Diagnosis and treatment gout arthritis. J Major. 2014;3(7):39–45
  5. Ali N, Perveen R, Rahman S, Mahmood S, Rahman S, Islam S, et al. Prevalence of hyperuricemia and the relationship between serum uric acid and obesity: A study on Bangladeshi adults. PLoS One 2018;13(11):1–12. doi: 10.1371/journal.pone.0206850
  6. Bilal M, Ahmad S, Rehman T, Ghauri AO, Khalid S, Abbasi WM, et al. Anti-Hyperuricemic and Uricosuric Potential of Berberis vulgaris in Oxonate-Induced Hyperuricemic Rats. Dose-Response 2021;19(3):1–6. doi: 10.1177/15593258211040329
  7. Nishizawa H, Maeda N, Shimomura I. Impact of hyperuricemia on chronic kidney disease and atherosclerotic cardiovascular disease. Hypertens Res 2022;45(4):635–40. doi: 10.1038/s41440-021-00840-w
  8. Xiao B, Ma W, Zheng Y, Li Z, Li D, Zhang Y, et al. Effects of resveratrol on the inflammatory response and renal injury in hyperuricemic rats. Nutr Res Pract 2021;15(1):26–37. doi: 10.4162/nrp.2021.15.1.26
  9. Schlesinger N. Management of Acute and Chronic. 2004;64(21):2399–416. doi: 10.2165/00003495-200464210-00003
  10. Mehmood A, Zhao L, Ishaq M, Usman M, Zad OD, Hossain I, et al. Uricostatic and uricosuric effect of grapefruit juice in potassium oxonate-induced hyperuricemic mice. J Food Biochem 2020;44(7):1–13. doi: 10.1111/jfbc.13213
  11. Hao S, Zhang C, Song H. Natural Products Improving Hyperuricemia with Hepatorenal Dual Effects. Evidence-based Complement Altern Med 2016;10:1–7. doi: 10.1155/2016/7390504
  12. Almeer RS, Hammad SF, Leheta OF, Abdel Moneim AE, Amin HK. Anti-Inflammatory and Anti-Hyperuricemic Functions of Two Synthetic Hybrid Drugs with Dual Biological Active Sites. Int J Mol Sci 2019;20(22):1–13. doi: 10.3390/ijms20225635
  13. Zhao CP, Chen GY, Wang Y, Chen H, Yu JW, Yang FQ. Evaluation of enzyme inhibitory activity of flavonoids by polydopamine-modified hollow fiber-immobilized xanthine oxidase. Molecules 2021;26(13). doi: 10.3390/molecules26133931
  14. Ramallo IA, Zacchino SA, Furlan RLE. A rapid TLC autographic method for the detection of xanthine oxidase inhibitors and superoxide scavengers. Phytochem Anal 2006;17(1):15–9. doi: 10.1002/pca.874
  15. Saraswaty V, Ketut Adnyana I, Pudjiraharti S, Mozef T, Insanu M, Kurniati NF, et al. Fractionation using adsorptive macroporous resin HPD-600 enhances antioxidant activity of Gnetum gnemon L. seed hard shell extract. J Food Sci Technol 2017;54(10):3349–57. doi: 10.1007/s13197-017-2793-3
  16. Fraternale A, Paoletti M, Casabianca A, Oiry J, Clayette P, Vogel J-, et al. Antiviral and Immunomodulatory Properties of New Pro-Glutathione (GSH) Molecules. Curr Med Chem 2006;13(15):1749–55. doi: 10.2174/092986706777452542
  17. Lu SC. Regulation of glutathione synthesis. Mol Aspects Med 2009;30(1–2):42–59. doi: 10.1016/j.mam.2008.05.005
  18. Orwa C, Mutua A, Kindt R, Jamnadass R SA. Agroforestree Database : A tree reference and selection guide version 4.0. J Agric Food Chem. 2009;57(6):2544–9
  19. Kato E, Tokunaga Y, Sakan F. Stilbenoids isolated from the seeds of melinjo (Gnetum gnemon L.) and their biological activity. J Agric Food Chem 2009;57(6):2544–9. doi: 10.1021/jf803077p
  20. Shi YW, Wang CP, Liu L, Liu YL, Wang X, Hong Y, et al. Antihyperuricemic and nephroprotective effects of resveratrol and its analogues in hyperuricemic mice. Mol Nutr Food Res 2012;56(9):1433–44. doi: 10.1002/mnfr.201100828
  21. Fischer N, Seo EJ, Efferth T. Prevention from radiation damage by natural products. Phytomedicine 2018;47:192–200. doi: 10.1016/j.phymed.2017.11.005
  22. Bhat R, Binti Yahya N. Evaluating belinjau (Gnetum gnemon L.) seed flour quality as a base for development of novel food products and food formulations. Food Chem 2014;156:42–9. doi: 10.1016/j.foodchem.2014.01.063
  23. Masuoka N. Stilbene compounds are specific inhibitors of the superoxide anion generation catalyzed by xanthine oxidase. Food Chem X 2021;12:100146. doi: 10.1016/j.fochx.2021.100146
  24. Singh JV, Bedi PMS, Singh H, Sharma S. Xanthine oxidase inhibitors: patent landscape and clinical development (2015–2020). Expert Opin Ther Pat 2020;30(10):769–80. doi: 10.1080/13543776.2020.1811233
  25. Siswoyo TA, Mardiana E, Lee KO, Hoshokawa K. Isolation and characterization of antioxidant protein fractions from melinjo (Gnetum gnemon) seeds. J Agric Food Chem 2011;59(10):5648–56. doi: 10.1021/jf2000647
  26. Rahman I, Kode A, Biswas SK. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc 2007;1(6):3159–65. doi: 10.1038/nprot.2006.378
  27. Giustarini D, Fanti P, Matteucci E, Rossi R. Micro-method for the determination of glutathione in human blood. J Chromatogr B Anal Technol Biomed Life Sci 2014;964:191–4. doi: 10.1016/j.jchromb.2014.02.018
  28. Wahyuningtyas AP, Putri DP, Maharani N, Al-Baarri AN matullah. Flavonoid fraction from chayote (Sechium edule (Jacq.) Sw) leaves reduced malondialdehyde (MDA) and tumor necrosis factor-α (TNF-α) in hyperuricemic rats. Nutr Food Sci 2021;52(2):366–78. doi: 10.1108/NFS-04-2021-0134
  29. Gad EL-Hak HN, Abdelrazek HMA, Zeidan DW, Almallah AA, Khaled HE. Assessment of changes in the liver of pregnant female rats and their fetuses following monosodium glutamate administration. Environ Sci Pollut Res 2021;28(32):44432–41. doi: 10.1007/s11356-021-13557-7
  30. Tang DH, Ye YS, Wang CY, Li ZL, Zheng H, Ma KL. Potassium oxonate induces acute hyperuricemia in the tree shrew (Tupaia belangeri chinensis). Exp Anim 2017;66(3):209–16. doi: 10.1538/expanim.16-0096
  31. Wang K, Hu L, Chen JK. RIP3-deficience attenuates potassium oxonate-induced hyperuricemia and kidney injury. Biomed Pharmacother 2018;101(September 2017):617–26. doi: 10.1016/j.biopha.2018.02.010
  32. Giustarini D, Dalle-Donne I, Milzani A, Fanti P, Rossi R. Analysis of GSH and GSSG after derivatization with N-ethylmaleimide. Nat Protoc 2013;8(9):1660–9. doi: 10.1038/nprot.2013.095
  33. Ramirez-Sandoval JC, Madero M. Treatment of Hyperuricemia in Chronic Kidney Disease. Contrib Nephrol 2018;192:135–46. doi: 10.1159/000484288
  34. Jia N, Dong P, Ye Y, Qian C, Dai Q. Allopurinol Attenuates Oxidative Stress and Cardiac Fibrosis in Angiotensin II-Induced Cardiac Diastolic Dysfunction. Cardiovasc Ther 2012;30(2):117–23. doi: 10.1111/j.1755-5922.2010.00243.x
  35. El-Mahdy NA, Saleh DA, Amer MS, Abu-Risha SES. Role of allopurinol and febuxostat in the amelioration of dextran-induced colitis in rats. Eur J Pharm Sci 2020;141:105116. doi: 10.1016/j.ejps.2019.105116
  36. Konno H, Kanai Y, Katagiri M, Watanabe T, Mori A, Ikuta T, et al. Melinjo (Gnetum gnemon L.) seed extract decreases serum uric acid levels in nonobese Japanese males: A randomized controlled study. Evidence-based Complement Altern Med 2013;2013(4):589169. doi: 10.1155/2013/589169
  37. Nagao A, Seki M, Kobayashi H. Inhibition of xanthine oxidase by flavonoids. Biosci Biotechnol Biochem 1999 Oct;63(10):1787–90. doi: 10.1271/bbb.63.1787
  38. Vasamsetti SB, Karnewar S, Gopoju R, Gollavilli PN, Narra SR, Kumar JM, et al. Resveratrol attenuates monocyte-to-macrophage differentiation and associated inflammation via modulation of intracellular GSH homeostasis: Relevance in atherosclerosis. Free Radic Biol Med 2016;96:392–405. doi: 10.1016/j.freeradbiomed.2016.05.003
  39. J LE, Thi An1 D, Trung LQ, Yamada K, Nakao S, Takami A. Stilbene derivatives from melinjo extract have antioxidant and immune modulatory effects in healthy individuals. Integr Mol Med 2015;2(6):405–13. doi: 10.15761/imm.1000177
  40. Radwan RR, Karam HM. Resveratrol attenuates intestinal injury in irradiated rats via PI3K/Akt/mTOR signaling pathway. Environ Toxicol 2020;35(2):223–30. doi: 10.1002/tox.22859
  41. Adhikary M, Mukhopadhyay K, Sarkar B. Flavonoid-rich wheatgrass (Triticum aestivum L.) diet attenuates diabetes by modulating antioxidant genes in streptozotocin-induced diabetic rats. J Food Biochem 2021;45(4):1–18. doi: 10.1111/jfbc.13643
  42. Tang X, Tang P, Ma L, Liu L. Screening and evaluation of xanthine oxidase inhibitors from gnetum parvifolium in China. Molecules 2019;24(14):1–10. doi: 10.3390/molecules24142671
  43. Pannu N, Bhatnagar A. Combinatorial therapeutic effect of resveratrol and piperine on murine model of systemic lupus erythematosus. Inflammopharmacology 2020; 28(2):401–24. doi: 10.1007/s10787-019-00662-w

Last update:

No citation recorded.

Last update:

No citation recorded.