skip to main content

The Protective effect of Hibiscus sabdariffa on Lung Damage in Rats due to Cigarette Smoke Exposure

*Faizah Fulyani orcid scopus  -  Medical Biology and Biochemistry Department, Faculty of Medicine, Universitas Diponegoro, Indonesia, Indonesia
Muhammad Yudhistira  -  Undergraduate school program of Medicine, Faculty of Medicine, Universitas Diponegoro, Indonesia, Indonesia
Hermawan Istiadi  -  Histopathology Department, Faculty of Medicine, Universitas Diponegoro, Indonesia, Indonesia
Puspita Kusuma Dewi  -  Biology and Biochemistry Department, Faculty of Medicine, Universitas Diponegoro, Indonesia, Indonesia
Riski Prihatningtias  -  Ophthalmology Department, Faculty of Medicine, Universitas Diponegoro, Indonesia, Indonesia
Noor Wijayahadi  -  Pharmacology Department, Faculty of Medicine, Universitas Diponegoro, Indonesia, Indonesia
Desy Armalina  -  Histopathology Department, Faculty of Medicine, Universitas Diponegoro, Indonesia, Indonesia

Citation Format:
Abstract

Background: Cigarette smoke consists of many free radicals that can reduce antioxidants in the body and further trigger oxidative stress. The state of oxidative stress can be minimized through antioxidant supplementation. Hibiscus sabdariffa (Rosella) is a herbal plant reported to be rich in antioxidants.

Objective: To investigate the protective effect of Rosella extract on the microstructure of the lung and plasma Malondialdehyde (MDA) levels of rats exposed to cigarette smoke.

Methods: This research is an experimental study with a post-test-only group design. A total of 36 male Sprague Dawley rats were randomly divided into six groups[L1] . Group K was given standard food and free access to water. Group K1, K2, P1, P2, and P3 were exposed to 4 cigarettes/day for 30 consecutive days. Before cigarette smoke exposure, each group received treatment with 1 mL saline (K1), vitamin E 0.2 g/kg b.w. (K2), and infused Rosella 0.25 g/kg b.w. (P1), 0.5 g/kg b.w. (P2), and 1 g/kg b.w. (P3). Plasma MDA levels were measured by the TBARS method. Statistical analysis was performed with one way ANOVA test and continued with a post hoc test.

Results: Circulated MDA levels of groups K, K1, K2, P1, P2, and P3 were 1.84 ± 0.18 nmol/mL, 9.57 ± 0.27 nmol/mL, 2.24 ± 0.10 nmol/mL, 4.93 ± 0.31 nmol/mL 3.85 ± 0.55 nmol/mL, and 2.62 ± 0.37 nmol/mL respectively. Cigarette smoke exposure in group K showed significantly higher MDA levels (K versus K1; p < 0.001).  The administration of rosella infusion (P1, P2, P3) and or vitamin E supplementation (K2) can significantly suppress the plasma MDA levels due to cigarette smoke exposure ( p < 0.05). The administration of Rosella flower infusion 1 g/kg b.w. has an antioxidant effect similar to vitamin E supplementation 0.2  g/kg b.w. (p = 0.268).

Conclusion: The administration of Rosella flower infusion could prevent lung damage from oxidative stress induced by cigarette smoke exposure.

 

Keywords: Cigarette, Hibiscus sabdariffa,MDA, Oxidative stress.
Fulltext View|Download
Keywords: Cigarette, Hibiscus sabdariffa, Lung damage, MDA, Oxidative stress
Funding: This research was partially funded by Non-APBN 2020, Faculty of Medicine, Universitas Diponegoro.

Article Metrics:

  1. References
  2. B. Le Foll, M.E. Piper, C.D. Fowler, S. Tonstad, L. Bierut, L. Lu, P. Jha, W.D. Hall, Tobacco and nicotine use, Nat. Rev. Dis. Primer. 8 (2022) 1–16. https://doi.org/10.1038/s41572-022-00346-w
  3. A. Rodgman, T. Perfetti, The Chemical Components of Tobacco and Tobacco Smoke, 2008. https://doi.org/10.1201/9781420078848
  4. Y. Li, S.S. Hecht, Carcinogenic components of tobacco and tobacco smoke: A 2022 update, Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 165 (2022) 113179. https://doi.org/10.1016/j.fct.2022.113179
  5. K. Aoshiba, A. Nagai, Oxidative stress, cell death, and other damage to alveolar epithelial cells induced by cigarette smoke, Tob. Induc. Dis. 1 (2003) 219–226. https://doi.org/10.1186/1617-9625-1-3-219
  6. T. Yoshikawa, Y. Naito, What Is Oxidative Stress?, Jpn. Med. Assoc. J. 45 (2002) 271–276
  7. H.-Y. Wu, K.-M. Yang, P.-Y. Chiang, Roselle Anthocyanins: Antioxidant Properties and Stability to Heat and pH, Mol. J. Synth. Chem. Nat. Prod. Chem. 23 (2018) 1357. https://doi.org/10.3390/molecules23061357
  8. I. Borrás-Linares, S. Fernández-Arroyo, D. Arráez-Roman, P.A. Palmeros-Suárez, R. Del Val-Díaz, I. Andrade-Gonzáles, A. Fernández-Gutiérrez, J.F. Gómez-Leyva, A. Segura-Carretero, Characterization of phenolic compounds, anthocyanidin, antioxidant and antimicrobial activity of 25 varieties of Mexican Roselle (Hibiscus sabdariffa), Ind. Crops Prod. 69 (2015) 385–394. https://doi.org/10.1016/j.indcrop.2015.02.053
  9. A. Amos, B. Khiatah, Mechanisms of Action of Nutritionally Rich Hibiscus sabdariffa’s Therapeutic Uses in Major Common Chronic Diseases: A Literature Review, J. Am. Nutr. Assoc. 41 (2022) 116–124. https://doi.org/10.1080/07315724.2020.1848662
  10. G. Riaz, R. Chopra, A review on phytochemistry and therapeutic uses of Hibiscus sabdariffa L, Biomed. Pharmacother. Biomedecine Pharmacother. 102 (2018) 575–586. https://doi.org/10.1016/j.biopha.2018.03.023
  11. N. Mohd-Esa, F.S. Hern, A. Ismail, C.L. Yee, Antioxidant activity in different parts of roselle (Hibiscus sabdariffa L.) extracts and potential exploitation of the seeds, Food Chem. 122 (2010) 1055–1060. https://doi.org/10.1016/j.foodchem.2010.03.074
  12. E. Montalvo-González, Z. Villagrán, S. González-Torres, L.E. Iñiguez-Muñoz, M.A. Isiordia-Espinoza, J.M. Ruvalcaba-Gómez, R.I. Arteaga-Garibay, J.L. Acosta, N. González-Silva, L.M. Anaya-Esparza, Physiological Effects and Human Health Benefits of Hibiscus sabdariffa: A Review of Clinical Trials, Pharm. Basel Switz. 15 (2022) 464. https://doi.org/10.3390/ph15040464
  13. Y.B. Laskar, P.B. Mazumder, Insight into the molecular evidence supporting the remarkable chemotherapeutic potential of Hibiscus sabdariffa L., Biomed. Pharmacother. 127 (2020) 110153. https://doi.org/10.1016/j.biopha.2020.110153
  14. L. Carsana, A. Sonzogni, A. Nasr, R.S. Rossi, A. Pellegrinelli, P. Zerbi, R. Rech, R. Colombo, S. Antinori, M. Corbellino, M. Galli, E. Catena, A. Tosoni, A. Gianatti, M. Nebuloni, Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study, Lancet Infect. Dis. 20 (2020) 1135–1140. https://doi.org/10.1016/S1473-3099(20)30434-5
  15. Free-radical chemistry of cigarette smoke and its toxicological implications. - PMC, (n.d.). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1568603/ (accessed December 30, 2022)
  16. Cellular and molecular mechanisms of chronic obstructive pulmonary disease - PubMed, (n.d.). https://pubmed.ncbi.nlm.nih.gov/24507838/ (accessed December 31, 2022)
  17. Oxidative stress–induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease - ScienceDirect, (n.d.). https://www.sciencedirect.com/science/article/pii/S0091674915002651 (accessed December 31, 2022)
  18. R.L. Birru, Y.P. Di, Pathogenic mechanism of second hand smoke induced inflammation and COPD, Front. Physiol. 3 (2012) 348. https://doi.org/10.3389/fphys.2012.00348
  19. Effects of cigarette smoke on barrier function and tight junction proteins in the bronchial epithelium: protective role of cathelicidin LL-37 - PubMed, (n.d.). https://pubmed.ncbi.nlm.nih.gov/31706310/ (accessed January 2, 2023)
  20. C.W. Agudelo, G. Samaha, I. Garcia-Arcos, Alveolar lipids in pulmonary disease. A review, Lipids Health Dis. 19 (2020) 122. https://doi.org/10.1186/s12944-020-01278-8
  21. C. Korkmaz, Antioxidant Effects Of Bisphosphonates In Smoking-Induced Lung Injury In A Rat Model, Haydarpasa Numune Train. Res. Hosp. Med. J. (2018). https://doi.org/10.14744/hnhj.2018.45087
  22. D. Tsikas, Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges, Anal. Biochem. 524 (2017) 13–30. https://doi.org/10.1016/j.ab.2016.10.021
  23. F. Nielsen, B.B. Mikkelsen, J.B. Nielsen, H.R. Andersen, P. Grandjean, Plasma malondialdehyde as biomarker for oxidative stress: reference interval and effects of life-style factors, Clin. Chem. 43 (1997) 1209–1214
  24. R. Ahmadkhaniha, F. Yousefian, N. Rastkari, Impact of smoking on oxidant/antioxidant status and oxidative stress index levels in serum of the university students, J. Environ. Health Sci. Eng. 19 (2021) 1043–1046. https://doi.org/10.1007/s40201-021-00669-y
  25. I. Altuntaş, S. Dane, K. Gümüştekin, Effects of cigarette smoking on lipid peroxidation, J. Basic Clin. Physiol. Pharmacol. 13 (2002) 69–72. https://doi.org/10.1515/jbcpp.2002.13.1.69
  26. I.R. Brude, C.A. Drevon, I. Hjermann, I. Seljeflot, S. Lund-Katz, K. Saarem, B. Sandstad, K. Solvoll, B. Halvorsen, H. Arnesen, M.S. Nenseter, Peroxidation of LDL from combined-hyperlipidemic male smokers supplied with omega-3 fatty acids and antioxidants, Arterioscler. Thromb. Vasc. Biol. 17 (1997) 2576–2588. https://doi.org/10.1161/01.atv.17.11.2576
  27. F. Bamonti, C. Novembrino, S. Ippolito, E. Soresi, A. Ciani, S. Lonati, E. Scurati-Manzoni, G. Cighetti, Increased free malondialdehyde concentrations in smokers normalise with a mixed fruit and vegetable juice concentrate: a pilot study, Clin. Chem. Lab. Med. 44 (2006) 391–395. https://doi.org/10.1515/CCLM.2006.084
  28. I. Da-Costa-Rocha, B. Bonnlaender, H. Sievers, I. Pischel, M. Heinrich, Hibiscus sabdariffa L. - a phytochemical and pharmacological review, Food Chem. 165 (2014) 424–443. https://doi.org/10.1016/j.foodchem.2014.05.002

Last update:

No citation recorded.

Last update:

No citation recorded.