skip to main content

POTENSI HIDROLISAT PROTEIN IKAN DALAM KONTROL GLUKOSA DARAH DAN NAFSU MAKAN PADA OBESITAS UNTUK MENCEGAH DIABETES MELITUS TIPE 2: LITERATURE REVIEW

Departemen Ilmu Gizi, Fakultas Kedokteran, Universitas Diponegoro, Semarang, Jawa Tengah, Indonesia

Received: 15 Jul 2025; Revised: 1 Dec 2025; Accepted: 12 Dec 2025; Available online: 28 Jan 2026; Published: 30 Jan 2026.

Citation Format:
Abstract

ABSTRACT

Background: Obesity is a metabolic disorder and one of the most critical human health issues worldwide. It can lead to an increased risk of metabolic diseases, such as diabetes mellitus and cardiovascular diseases. Fish protein hydrolysate (FPH) has been recognized as a potential source of bioactive peptides that may aid in regulating blood glucose homeostasis and appetite management in obese individuals, hence potentially decreasing the risk of developing type 2 diabetes mellitus.

Objective: To explore the effects of fish protein hydrolysate (FPH) on blood glucose control and appetite regulation, and to analyze its impact on weight loss in obese individuals to prevent type 2 diabetes mellitus.

Methods: A literature review of five databases: PubMed, Science Direct, Scopus, Cochrane Library, and Google Scholar. The keywords related to type 2 diabetes mellitus, blood glucose, fish protein hydrolysate, obesity, bioactive peptides and satiety with inclusion criteria of articles in English published in the last decade (2015–2025).

Results: Through disruptions in insulin sensitivity and satiety signals, glucose dysfunction and appetite dysregulation in obese individuals significantly contribute to an increased risk of type 2 diabetes mellitus. The mechanism of action of fish protein hydrolysate (HPI) has been shown to help regulate appetite and glucose homeostasis by stimulating satiety hormones such as GLP-1 and increasing the availability of certain amino acids responsible for energy metabolism.

Conclusion: HPI may influence reductions in weight loss and the regulation of certain metabolic biomarkers, particularly in individuals with overweight or metabolic syndrome. However, the reported information on how HPI affects appetite regulation, digestive hormone secretion, and blood glucose control remains varied and not fully consistent.

Keywords: Type 2 diabetes mellitus; blood glucose; fish protein hydrolysate; obesity; satiety

 

ABSTRAK

Latar belakang : Obesitas adalah gangguan metabolisme dan salah satu masalah manusia yang paling kritis di seluruh dunia. Hal ini dapat menyebabkan risiko penyakit metabolik, seperti diabetes melitus tipe 2 (DM tipe 2) dan penyakit kardiovaskular. Hidrolisat Protein Ikan (HPI) telah muncul sebagai komponen bioaktif peptida yang berpotensi dengan keuntungan potensial membantu kontrol glukosa darah dan nafsu makan  pada obesitas dan mencegah terjadinya diabetes melitus tipe 2.

Tujuan: Mengeksplorasi efek hidrolisat protein ikan (HPI) pada kontrol gula darah dan regulasi nafsu makan serta menganalisis dampaknya dalam menurunkan berat badan pada penderita obesitas untuk mencegah diabetes melitus tipe 2.

Metode: Tinjauan pustaka terhadap lima database: PubMed, Science Direct, Scopus, Cochrane Library dan Google Scholar. Kata kunci yang terkait dengan diabetes mellitus tipe 2, glukosa darah, hidrolisat protein ikan, obesitas, peptida bioaktif dan rasa kenyang, dengan kriteria inklusi artikel dalam bahasa Inggris yang diterbitkan dalam satu dekade terakhir (2015–2025).

Hasil: Melalui gangguan pada sensitivitas insulin dan sinyal kenyang, disfungsi glukosa dan disregulasi nafsu makan pada orang obesitas berkontribusi secara signifikan terhadap peningkatan risiko DM tipe 2. Mekanisme kerja hidrolisat protein ikan (HPI) terbukti dapat membantu mengatur nafsu makan dan homeostasis glukosa dengan menstimulasi hormon kenyang seperti GLP-1 dan meningkatkan ketersediaan asam amino tertentu yang bertanggung jawab atas metabolisme energi.

Simpulan: HPI dapat mempengaruhi penurunan berat badan dan pengaturan biomarker metabolik tertentu, terutama pada orang dengan kelebihan berat badan atau sindrom metabolik. Namun, informasi yang dilaporkan tentang bagaimana HPI mempengaruhi regulasi nafsu makan, sekresi hormon pencernaan, dan kontrol glukosa darah masih beragam dan belum sepenuhnya konsisten.

Kata Kunci : Diabetes melitus tipe 2; glukosa darah; hidrolisat protein ikan; obesitas, rasa kenyang

Fulltext View|Download
Keywords: Diabetes melitus tipe 2; glukosa darah; hidrolisat protein ikan; obesitas, rasa kenyang

Article Metrics:

  1. Tham KW, Abdul Ghani R, Cua SC, Deerochanawong C, Fojas M, Hocking S, et al. Obesity in South and Southeast Asia—A new consensus on care and management. Obesity Reviews. 2023;24(2):e13520. DOI: https://doi.org/10.1111/obr.13520
  2. Mechanick JI, Hurley DL, Garvey WT. Adiposity-based chronic disease as a new diagnostic term: the American Association of Clinical Endocrinologists and American College of Endocrinology position statement. Endocrine Practice. 2017;23(3):372-8. DOI: https://doi.org/10.4158/EP161688.PS
  3. Wen X, Zhang B, Wu B, Xiao H, Li Z, Li R, et al. Signaling pathways in obesity: mechanisms and therapeutic interventions. Signal transduction and targeted therapy. 2022;7(1):298. DOI: https://doi.org/10.1038/s41392-022-01149-x
  4. Kementrian Kesehatan Republik Indonesia. Survei Kesehatan Indonesia (SKI) 2023 Dalam Angka. Jakarta; 2023
  5. Haryono DA, Arifin S, Shinta HE, Widodo T, Yuliani NNS. Hubungan obesitas dan aktivitas fisik dengan kejadian diabetes melitus tipe II pada usia> 40 tahun di wilayah kerja Puskesmas Bukit Hindu. Barigas: Jurnal Riset Mahasiswa. 2023;1(2). DOI: https://doi.org/10.37304/barigas.v1i2.7987
  6. Handayani ST, Hubaybah H, Noerjoedianto D. Hubungan obesitas dan aktivitas fisik dengan kejadian diabetes melitus tipe II di wilayah kerja Puskesmas Olak Kemang tahun 2018. Jurnal Kesmas Jambi. 2018;2(1):1-11. DOI: https://doi.org/10.22437/jkmj.v2i1.6535
  7. Suryaningtyas IT, Je J-Y. Bioactive peptides from food proteins as potential anti-obesity agents: Mechanisms of action and future perspectives. Trends in Food Science & Technology. 2023;138:141-52. DOI: https://doi.org/10.1016/j.tifs.2023.06.015
  8. Klein S, Gastaldelli A, Yki-Järvinen H, Scherer PE. Why does obesity cause diabetes? Cell metabolism. 2022;34(1):11-20. DOI: https://doi.org/10.1016/j.cmet.2021.12.012
  9. Rahmawati A. Mekanisme terjadinya inflamasi dan stres oksidatif pada obesitas. El-Hayah. 2014;5(1):1-8. DOI: https://doi.org/10.18860/elha.v5i1.3034
  10. Sharkey SJ, Harnedy‐Rothwell PA, Allsopp PJ, Hollywood LE, FitzGerald RJ, O'Harte FP. A narrative review of the anti‐hyperglycemic and satiating effects of fish protein hydrolysates and their bioactive peptides. Molecular nutrition & food research. 2020;64(21):2000403. DOI: https://doi.org/10.1002/mnfr.202000403
  11. Nirmal NP, Santivarangkna C, Benjakul S, Maqsood S. Fish protein hydrolysates as a health-promoting ingredient—recent update. Nutrition reviews. 2022;80(5):1013-26. DOI: https://doi.org/10.1093/nutrit/nuab065
  12. Chelliah R, Wei S, Daliri EB-M, Elahi F, Yeon S-J, Tyagi A, et al. The role of bioactive peptides in diabetes and obesity. Foods. 2021;10(9):2220. DOI: https://doi.org/10.3390/foods10092220
  13. Halim N, Yusof H, Sarbon N. Functional and bioactive properties of fish protein hydolysates and peptides: A comprehensive review. Trends in Food Science & Technology. 2016;51:24-33. DOI: https://doi.org/10.1016/j.tifs.2016.02.007
  14. Jiang X, Rao Q. Effect of processing on fish protein antigenicity and allergenicity. Foods. 2021;10(5):969. DOI: https://doi.org/10.3390/foods10050969
  15. Jiménez-Saiz R, Benedé S, Molina E, López-Expósito I. Effect of processing technologies on the allergenicity of food products. Critical reviews in food science and nutrition. 2015;55(13):1902-17. DOI: https://doi.org/10.1080/10408398.2012.736435
  16. Gao R, Yu Q, Shen Y, Chu Q, Chen G, Fen S, et al. Production, bioactive properties, and potential applications of fish protein hydrolysates: Developments and challenges. Trends in Food Science & Technology. 2021;110:687-99. DOI: https://doi.org/10.1016/j.tifs.2021.02.031
  17. Kaushik N, Falch E, Slizyte R, Kumari A, Hjellnes V, Sharma A, et al. Valorization of fish processing by-products for protein hydrolysate recovery: Opportunities, challenges and regulatory issues. Food Chemistry. 2024;459:140244. DOI: https://doi.org/10.1016/j.foodchem.2024.140244
  18. Chalamaiah M, Hemalatha R, Jyothirmayi T. Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review. Food chemistry. 2012;135(4):3020-38. DOI: https://doi.org/10.1016/j.foodchem.2012.06.100
  19. Shekoohi N, Carson BP, Fitzgerald RJ. Antioxidative, glucose management, and muscle protein synthesis properties of fish protein hydrolysates and peptides. Journal of Agricultural and Food Chemistry. 2024;72(39):21301-17. DOI: https://doi.org/10.1021/acs.jafc.4c02920
  20. Ghassem M, Fern SS, Said M, Ali ZM, Ibrahim S, Babji AS. Kinetic characterization of Channa striatus muscle sarcoplasmic and myofibrillar protein hydrolysates. Journal of Food Science and Technology. 2014;51(3):467-75. DOI: https://doi.org/10.1007/s13197-011-0526-6
  21. Hou H, Li B, Zhao X. Enzymatic hydrolysis of defatted mackerel protein with low bitter taste. Journal of Ocean University of China. 2011;10(1):85-92. DOI: https://doi.org/10.1007/s11802-011-1785-6
  22. Klompong V, Benjakul S, Yachai M, Visessanguan W, Shahidi F, Hayes K. Amino acid composition and antioxidative peptides from protein hydrolysates of yellow stripe trevally (Selaroides leptolepis). Journal of food science. 2009;74(2):C126-C33. DOI: https://doi.org/10.1111/j.1750-3841.2009.01047.x
  23. Yin H, Pu J, Wan Y, Xiang B, Bechtel PJ, Sathivel S. Rheological and functional properties of catfish skin protein hydrolysates. Journal of food science. 2010;75(1):E11-E7. DOI: https://doi.org/10.1111/j.1750-3841.2009.01385.x
  24. Chakraborty SP. Patho-physiological and toxicological aspects of monosodium glutamate. Toxicology mechanisms and methods. 2019;29(6):389-96. DOI: https://doi.org/10.1080/15376516.2018.1528649
  25. Simonson M, Boirie Y, Guillet C. Protein, amino acids and obesity treatment. Reviews in endocrine and metabolic disorders. 2020;21(3):341-53. DOI: https://doi.org/10.1007/s11154-020-09574-5
  26. van den Pol AN, Acuna C, Davis JN, Huang H, Zhang X. Defining the caudal hypothalamic arcuate nucleus with a focus on anorexic excitatory neurons. The Journal of physiology. 2019;597(6):1605-25. DOI: https://doi.org/10.1113/JP277152
  27. Maltais-Payette I, Boulet M-M, Prehn C, Adamski J, Tchernof A. Circulating glutamate concentration as a biomarker of visceral obesity and associated metabolic alterations. Nutrition & metabolism. 2018;15(1):78. DOI: https://doi.org/10.1186/s12986-018-0316-5
  28. Cheung RCF, Ng TB, Wong JH. Marine peptides: Bioactivities and applications. Marine drugs. 2015;13(7):4006-43. DOI: https://doi.org/10.3390/md13074006
  29. Bjerknes C, Wubshet SG, Rønning SB, Afseth NK, Currie C, Framroze B, et al. Glucoregulatory properties of a protein hydrolysate from Atlantic salmon (Salmo salar): Preliminary characterization and evaluation of DPP-IV inhibition and direct glucose uptake in vitro. Marine Drugs. 2024;22(4):151. DOI: https://doi.org/10.3390/md22040151
  30. Wan P, Cai B, Chen H, Chen D, Zhao X, Yuan H, et al. Antidiabetic effects of protein hydrolysates from Trachinotus ovatus and identification and screening of peptides with α-amylase and DPP-IV inhibitory activities. Current Research in Food Science. 2023;6:100446. DOI: https://doi.org/10.1016/j.crfs.2023.100446
  31. Vikøren LA, Nygård OK, Lied E, Rostrup E, Gudbrandsen OA. A randomised study on the effects of fish protein supplement on glucose tolerance, lipids and body composition in overweight adults. British journal of nutrition. 2013;109(4):648-57. DOI: doi:10.1017/S0007114512001717.
  32. Yang J, Chi Y, Burkhardt BR, Guan Y, Wolf BA. Leucine metabolism in regulation of insulin secretion from pancreatic beta cells. Nutrition reviews. 2010;68(5):270-9. DOI: https://doi.org/10.1111/j.1753-4887.2010.00282.x
  33. Oseguera-Toledo ME, González de Mejía E, Reynoso-Camacho R, Cardador-Martínez A, Amaya-Llano SL. Proteins and bioactive peptides: mechanisms of action on diabetes management. Nutrafoods. 2014;13(4):147-57. DOI: https://doi.org/10.1007/s13749-014-0052-z
  34. Entezari M, Hashemi D, Taheriazam A, Zabolian A, Mohammadi S, Fakhri F, et al. AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: A pre-clinical and clinical investigation. Biomedicine & Pharmacotherapy. 2022;146:112563. DOI: https://doi.org/10.1016/j.biopha.2021.112563
  35. Jensen C, Dale HF, Hausken T, Lied E, Hatlebakk JG, Brønstad I, et al. Supplementation with cod protein hydrolysate in older adults: A dose range cross-over study. Journal of nutritional science. 2019;8:e40. DOI: doi:10.1017/jns.2019.37.
  36. Zaïr Y, Duclos E, Housez B, Vergara C, Cazaubiel M, Soisson F. Evaluation of the satiating properties of a fish protein hydrolysate among overweight women: a pilot study. Nutrition & Food Science. 2014;44(5):389-99. DOI: https://doi.org/10.1108/NFS-06-2013-0075
  37. Mergenthaler P, Lindauer U, Dienel GA, Meisel A. Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends in neurosciences. 2013;36(10):587-97. DOI: https://doi.org/10.1016/j.tins.2013.07.001
  38. Yoon NA, Diano S. Hypothalamic glucose-sensing mechanisms. Diabetologia. 2021;64(5):985-93. DOI: https://doi.org/10.1007/s00125-021-05395-6
  39. Ferreira-Lazarte A, Moreno FJ, Villamiel M. Bringing the digestibility of prebiotics into focus: update of carbohydrate digestion models. Critical Reviews in Food Science and Nutrition. 2021;61(19):3267-78. DOI: https://doi.org/10.1080/10408398.2020.1798344
  40. Prastari C, Yasni S, Nurilmala M. Characterization of snakehead fish protein that’s potential as antihyperglikemik. Jurnal Pengolahan Hasil Perikanan Indonesia. 2017;20(2):413-23. DOI: https://doi.org/10.17844/jphpi.v20i2.18109
  41. Pires C, Leitão M, Sapatinha M, Gonçalves A, Oliveira H, Nunes ML, et al. Protein hydrolysates from salmon heads and cape hake by-products: comparing enzymatic method with subcritical water extraction on bioactivity properties. Foods. 2024;13(15):2418. DOI: https://doi.org/10.3390/foods13152418
  42. Prosser S, Fava M, Rogers LM, Liaset B, Breen L. Postprandial plasma amino acid and appetite responses with ingestion of a novel salmon-derived protein peptide in healthy young adults. British Journal of Nutrition. 2024;131(11):1860-72. DOI: https://doi.org/10.1017/S0007114524000540
  43. Cordeiro EM, de Oliveira GV, Volino‐Souza M, Velozo OdC, Alvares TS. Effects of fish protein hydrolysate ingestion on postexercise aminoacidemia compared with whey protein hydrolysate in young individuals. Journal of food science. 2020;85(1):21-7. DOI: https://doi.org/10.1111/1750-3841.14970
  44. Crowe W, Baird J, McLaughlin C, Harnedy P, Fitzgerald D, O'Harte F, et al. The effect of consuming boarfish (Capros aper) protein hydrolysate on glycated haemoglobin and BMI in overweight adults. Proceedings of the Nutrition Society. 2020;79(OCE2):E509. DOI: doi:10.1017/S0029665120004577.
  45. Jensen C, Fjeldheim Dale H, Hausken T, Hatlebakk JG, Brønstad I, Lied GA, et al. Supplementation with low doses of a cod protein hydrolysate on glucose regulation and lipid metabolism in adults with metabolic syndrome: A randomized, double-blind study. Nutrients. 2020;12(7):1991. DOI: https://doi.org/10.3390/nu12071991
  46. Dale HF, Jensen C, Hausken T, Lied E, Hatlebakk JG, Brønstad I, et al. Acute effect of a cod protein hydrolysate on postprandial acylated ghrelin concentration and sensations associated with appetite in healthy subjects: A double-blind crossover trial. Food & Nutrition Research. 2019;63:10.29219/fnr. v63. 3507. DOI: https://doi.org/10.29219/fnr.v63.3507
  47. Dale HF, Jensen C, Hausken T, Lied E, Hatlebakk JG, Brønstad I, et al. Effect of a cod protein hydrolysate on postprandial glucose metabolism in healthy subjects: A double-blind cross-over trial. Journal of nutritional science. 2018;7:e33. DOI: doi:10.1017/jns.2018.23.
  48. Nobile V, Duclos E, Michelotti A, Bizzaro G, Negro M, Soisson F. Supplementation with a fish protein hydrolysate (Micromesistius poutassou): effects on body weight, body composition, and CCK/GLP-1 secretion. Food & Nutrition Research. 2016;60(1):29857. DOI: https://doi.org/10.3402/fnr.v60.29857
  49. Framroze B, Sanjay Vekariya SV, Dhruv Swaroop DS. A placebo-controlled, randomized study on the impact of dietary salmon protein hydrolysate supplementation on body mass index in overweight human subjects. 2016. DOI: http://dx.doi.org/10.4172/2165-7904.1000296
  50. Ignot-Gutiérrez A, Serena-Romero G, Guajardo-Flores D, Alvarado-Olivarez M, Martínez AJ, Cruz-Huerta E. Proteins and peptides from food sources with effect on satiety and their role as anti-obesity agents: a narrative review. Nutrients. 2024;16(20):3560. DOI: https://doi.org/10.3390/nu16203560
  51. Näslund E, Hellström PM. Appetite signaling: from gut peptides and enteric nerves to brain. Physiology & behavior. 2007;92(1-2):256-62. DOI: https://doi.org/10.1016/j.physbeh.2007.05.017
  52. Miller GD. Appetite regulation: hormones, peptides, and neurotransmitters and their role in obesity. American journal of lifestyle medicine. 2019;13(6):586-601. DOI: https://doi.org/10.1177/1559827617716376
  53. Cawthon CR, de La Serre CB. The critical role of CCK in the regulation of food intake and diet-induced obesity. Peptides. 2021;138:170492. DOI: https://doi.org/10.1016/j.peptides.2020.170492
  54. Aldawsari M, Almadani FA, Almuhammadi N, Algabsani S, Alamro Y, Aldhwayan M. The efficacy of GLP-1 analogues on appetite parameters, gastric emptying, food preference and taste among adults with obesity: systematic review of randomized controlled trials. Diabetes, Metabolic Syndrome and Obesity. 2023:575-95. DOI: https://doi.org/10.2147/DMSO.S387116
  55. Ronveaux CC, Tomé D, Raybould HE. Glucagon-like peptide 1 interacts with ghrelin and leptin to regulate glucose metabolism and food intake through vagal afferent neuron signaling. The Journal of nutrition. 2015;145(4):672-80. DOI: https://doi.org/10.3945/jn.114.206029
  56. Lueders B, Kanney BC, Krone MJ, Gannon NP, Vaughan RA. Effect of branched-chain amino acids on food intake and indicators of hunger and satiety-a narrative summary. Human Nutrition & Metabolism. 2022;30:200168. DOI: https://doi.org/10.1016/j.hnm.2022.200168
  57. Gadde KM, Martin CK, Berthoud H-R, Heymsfield SB. Obesity: pathophysiology and management. Journal of the American College of Cardiology. 2018;71(1):69-84. DOI: https://doi.org/10.1016/j.jacc.2017.11.011
  58. Ludwig DS, Aronne LJ, Astrup A, de Cabo R, Cantley LC, Friedman MI, et al. The carbohydrate-insulin model: a physiological perspective on the obesity pandemic. The American journal of clinical nutrition. 2021;114(6):1873-85. DOI: https://doi.org/10.1093/ajcn/nqab270
  59. Lustig RH, Collier D, Kassotis C, Roepke TA, Kim MJ, Blanc E, et al. Obesity I: Overview and molecular and biochemical mechanisms. Biochemical pharmacology. 2022;199:115012. DOI: https://doi.org/10.1016/j.bcp.2022.115012
  60. Czech MP. Insulin action and resistance in obesity and type 2 diabetes. Nature medicine. 2017;23(7):804-14. DOI: https://doi.org/10.1038/nm.4350
  61. Ruze R, Liu T, Zou X, Song J, Chen Y, Xu R, et al. Obesity and type 2 diabetes mellitus: connections in epidemiology, pathogenesis, and treatments. Frontiers in endocrinology. 2023;14:1161521. DOI: https://doi.org/10.3389/fendo.2023.1161521
  62. Saisho Y. β-cell dysfunction: Its critical role in prevention and management of type 2 diabetes. World J Diabetes. 2015;6(1):109-24. DOI: 10.4239/wjd.v6.i1.109
  63. De la Cruz-Concepción B, Flores-Cortez YA, Barragán-Bonilla MI, Mendoza-Bello JM, Espinoza-Rojo M. Insulin: A connection between pancreatic β cells and the hypothalamus. World J Diabetes. 2023;14(2):76-91. DOI: 10.4239/wjd.v14.i2.76
  64. Moon S, Jung HS. Endoplasmic Reticulum Stress and Dysregulated Autophagy in Human Pancreatic Beta Cells. dmj. 2022;46(4):533-42. DOI: 10.4093/dmj.2022.0070
  65. Aukan MI, Nymo S, Ollestad KH, Boyesen GA, DeBenedictis JN, Rehfeld JF, et al. Differences in gastrointestinal hormones and appetite ratings among obesity classes. Appetite. 2022;171:105940. DOI: https://doi.org/10.1016/j.appet.2022.105940

Last update:

No citation recorded.

Last update:

No citation recorded.