skip to main content

PEMODELAN REGRESI NONPARAMETRIK BIRESPON SPLINE TRUNCATED PADA FAKTOR YANG MEMPENGARUHI PERSENTASE PENDUDUK MISKIN DAN INDEKS PEMBANGUNAN MANUSIA DI PROVINSI PAPUA

*Ramadhaniah Akhyar  -  Program Studi Statistika Fakultas MIPA Universitas Lambung Mangkurat, Indonesia
Nur Salam publons  -  Program Studi Statistika, Fakultas MIPA, Universitas Lambung Mangkurat, Indonesia
Yeni Rahkmawati orcid scopus  -  Program Studi Statistika, Fakultas MIPA, Universitas Lambung Mangkurat, Indonesia
Open Access Copyright 2025 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
In 2022, Papua Province has the highest percentage of poor people in Indonesia (26.03%) and an Human Development Index of 62.25%, indicating challenges in improving welfare. These two indicators are interrelated, with the hope that an increase in HDI can reduce poverty. Factors that influence both include life expectancy (X1), gini ratio (X2), and GRDP percapita(X3) . This study uses birresponse nonparametric regression model with a truncated spline approach to model the relationship. The GCV method was used to determine the optimum knot points, with the best model at three knot points of order 1, resulting in a minimum GCV of 17.90415 and R² of 85.11%. Simultaneous and partial tests showed that the model and the factors tested were significant. The results of this study indicate that the method used is effective in analyzing the relationship of economic factors to poverty and HDI, so it can be a reference for sustainable development policies in Papua.

Note: This article has supplementary file(s).

Fulltext View|Download |  common.other
Pemeriksaan Plagiasi
Subject
Type Other
  Download (537KB)    Indexing metadata
Keywords: Nonparametric Regression; Birespon; Spline Truncated; Papua Province; Percentage of Poor Population; Human Development Index
Funding: Universitas Lambung Mangkurat

Article Metrics:

  1. BPS, 2023. Papua Dalam Angka. Papua: Badan Pusat Statistika Provinsi Papua
  2. BPS, 2023. Statistika Indonesia. Jakarta: Badan Pusat Statistika
  3. Dani, A. T. R., 2021. Flexibility of Nonparametric Regression Spline Truncated on Data
  4. without a Specific Pattern. Jurnal Litbang Edusaintech, pp. 37 - 43
  5. Eubank, R. L., 1999. Nonparametric Regression and Spline Smoothing. New York: Mercel
  6. Dekker
  7. Hardle, W., 1990. Applied Nonparametric Regression. New York: Cambridge University
  8. Press
  9. Montgomery, D. d. R., 2018. Applied Statistics and Probability for Engineers.. United States
  10. of America: John Wiley and Sons
  11. Nabila, R., 2021. The effect of macroeconomic variables on the poverty rate in Indonesia
  12. Journal of Economics Research and Policy Studies , pp. 1(2), 1-9
  13. Nurhuda, G., 2022. Pemodelan Regresi Nonparametrik Berdasarkan Estimator Spline
  14. Truncated pada Data Simulasi. Jurnal Matematik, Statistika dan Komputasi, pp. 172 -
  15. Padutan, A. B., 2021. Pemodelan Angka Harapan Hidup dan Angka Kematian Bayi di
  16. Kalimantan dengan Regresi Nonparametrik Birespon. Barekeng: Jurnal Ilmu
  17. Matematika dan Terapan, pp. 283-296
  18. Paiman, 2019. Teknik Analisis Korelasi dan Regresi Ilmu-Ilmu Pertanian. Yogyakarta: UPY
  19. Press
  20. Piliang, M. Z., 2023. Kemiskinan, Kesenjangan Pendapat, dan Bantuan Sosial
  21. ATTANMIYAH: Jurna Ekonomi dan Bisnis Islam, pp. 262-284
  22. Sari, S. U. R., 2017. Perbandingan Model Regresi Nonparametrik Spline Multivariabel
  23. dengan Menggunakan Metode Generalized Cross Validation (GCV)dan Metode
  24. Unbiassed Risk (UBR) dalam Pemilihan Titik Knot Optimal. Prosiding SI MaNIs,
  25. Volym I, pp. 154-166
  26. Simila, T., 2007. Input selection and shrinkage in multiresponse linear regression
  27. Computational Statistics & Data Analysis
  28. Syahrazad, L., 2024. Analisis Faktor-Faktor yang Mempengaruhi Indeks Kedalaman
  29. Kemiskinan di Provinsi Papua. Jurnal of Development Economic and Digitalization,
  30. pp. 109 - 129
  31. Tediwibawa, R., 2019. Regresi Nonparametrik Spline Birespon Untuk Memodelkan
  32. Persentase Penduduk Miskin dan Indeks Kedalaman Kemiskinan di Kalimantan Timur
  33. Tahun 2015. Jurnal Eksponensial, pp. 21-28
  34. Wang, Y., 1998. Spline Smoothing Models With Correlated Error. Journal of the American
  35. Statistical Association, pp. 341 - 348
  36. Wu, H. & Zhang, J. T., 2006. Nonparametric Regression Methods for Longitudinal Data
  37. Analysis: Mixed-Effects Modeling Approaches. New York: John Wiley and Sons

Last update:

No citation recorded.

Last update:

No citation recorded.