skip to main content

PERAMALAN VOLATILITAS RETURN CRYPTOCURRENCY MENGGUNAKAN MODEL ASYMMETRIC GENERALIZED AUTOREGRESSIVE HETEROSCEDASTICITY (GARCH)

PERAMALAN VOLATILITAS RETURN CRYPTOCURRENCY MENGGUNAKAN MODEL ASYMMETRIC GENERALIZED AUTOREGRESSIVE HETEROSCEDASTICITY (GARCH) DILENGKAPI GUI-R

*Haasya Wafdayanti  -  Department of Statistics, Diponegoro University, Indonesia
Mustafid Mustafid  -  Department of Statistics, Diponegoro University, Indonesia
Suparti Suparti  -  Department of Statistics, Diponegoro University, Indonesia
Open Access Copyright 2025 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Cryptocurrency is a digital asset that has high level of risk and high rate of return so that it attracts many investors to invest. Risk is described as volatility, forecasting volatility can be a consideration for investors in viewing risks and making decisions in investment activities. High volatility raises the problem of non-constant residual variance (heteroscedasticity) so that the ARIMA model can’t be used to predict volatility. ARCH/GARCH models provide a solution for predicting volatility, but when applied to financial data, there is an asymmetric effect involving different positive and negative residuals with financial characteristics. Therefore, this research aims to anticipate the variation of returns for the next 7 days using asymmetric ARCH/GARCH models (EGARCH, TGARCH, APARCH). Volatility is represented using daily BNB-USD data from March 2nd, 2020 to February 4th, 2023. The research results show that the EGARCH (2,2) model is the best-performing model as it has the lowest RMSE and MAE values. SMAPE value obtained is 17,72%, which is in the range between 10% and 20%. It means model has good forecasting performance. Data analysis equipped with GUI-R can make it easier for investors to obtain forecasts of return volatility.

Keywords: Return; Volatility; Forecasting; BNB-USD; Asymmetric GARCH.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument

Subject
Type Research Instrument
  Download (348KB)    Indexing metadata
Keywords: Return; Volatility; Forecasting; BNB-USD; Asymmetric GARCH

Article Metrics:

  1. Ahmad,0W. M. A.W., Naing, N. N., dan0Halim, N. A. 2008. An0Application0of0Box0Cox Transformation0to0Biostatistics0Experiment0Data. Journal0of0Bioscience0Vol. 1 No. 19: Hal.137-145
  2. Ampountolas, A. 2022. Cryptocurrencies0Intraday0High-Frequency0Volatility0Spillover Effects0Using0Univariate0and0Multivariate0GARCH0Models. International Journal of0Financial0Studies0Vol. 100No.51: Hal.1-22
  3. Andersen, T. G., Bollerslev, T., Diebold, F. X., dan Labys, P. 2001. The Distribution of Realized Stock Return Volatility. Journal of Financial Economics No. 61: Hal. 43–76
  4. Bergsli, L.O., 0Lind, A. F., 0Molnar, P., 0dan0Polasik,0M. 02022. 0Forecasting0Volatility of0Bitcoin. 0Research0in0International0Business0and0Finance0No. 059: Hal.1-30
  5. Bollerslev, 1T. 11986. 1Generalized Autoregressiv Conditional Heteroskedasticity. 1Journal of Econometrics1Vol. 131: 1Hal.307–327
  6. Box, G. E., 0Cox, D. R. 01964. 0An0Analysis0of0Transformation. 0Journal0of0the0Royal Statistical0Society0Series0B0 (Methodological) 0Vol.2, 0No.26: 0Hal.211–252
  7. Brooks, C. 02008. 0Introductory0Econometrics0for0Finance. 0New0York: 0Cambridge University0Press
  8. Engle, R. 1982. 1Autoregressive1Conditional1Heteros-kedasticity1with1Estimates1of1The Variance1of1UK1Inflation. 1Econometrica1Vol. 150, 1No. 4: 1Hal.987-1008
  9. Francq, 0C., 0Zakoian. J. M. 02019. 0GARCH0Model0Structure, 0Statistical0Inference and Financial0Application. 0Prancis: 0A0John0Wiley0and0Sons, 0Ltd
  10. Hartono, S., 1Budiarsih, 1R. 12022. 1Potensi Kesuksesan Penerapan Pajak Penghasilan Terhadap Transaksi Aset Kripto di Indonesia. 1Jurnal1Pajak1dan1Keuangan1Negara Vol.04 No. 1: 1Hal. 132-146
  11. Hyndman, R. 0J., 0Khandakar, Y. 02008. 0Automatic0Time0Series0Forecasting: 0The forecast0Package0for0R. 0Journal0of0Statistical0Software0Vol. 27, No.3: Hal.1–22
  12. Khodir, R. 02020. 0Analisis0Volatilitas0Cryptocurrency0untuk0Estimasi0Value0at0Risk Menggunakan0Model0GARCH. Medan. Penerbit Universitas Sumatera Utara Medan
  13. Lee, L. 02004. 0Asymptotic0Distributions0of0Quasi-Maximum0Likelihood0Estimators0for Spatial0Autoregressive0Models. 0Econometrica0Vol. 72, No. 6: 0Hal.1899-1925
  14. Rosadi, D. 02011. 0Ekonometrika0&0Analisis0Runtun0Waktu0Terapan0dengan Eviews. 0Yogyakarta: 0Andi0Offset
  15. Sari, L.K., 0Achsani, 0N. A., 0dan0Sartono, B. 02017. 0Pemodelan0Volatilitas0Return Saham0: 0Studi0Kasus0Pasar0Saham0Asia. 0Jurnal0Ekonomi0dan0Pembangunan Indonesia0Vol. 018, 0No. 1: 0Hal.35-52
  16. Sukartini, 0M. 02022. 0Penerapan0Model0Generalized0Autoregressive0Conditional Heteroscedasticity0(GARCH) dalam0Peramalan0Indeks0Saham0Syariah0di Negara Asia. 0Yogyakarta. 0Penerbit0Universitas0Islam0Indonesia
  17. Tsay, R.S. 02005. 0Analysis0of0Financial0Time0Series. Canada : John Wiley and Sons, inc
  18. Wei, W.W.S. 02006. 0Time Series0Analysis, 0Univariate0and0Multivariate0Methods. 0Canada: 0Addison0Wesley0Publishing0Company
  19. Wibowo, N.M. 02016. 0Pemodelan0Return0Saham0Perbankan0Menggunakan Exponential0Generalized0Autoregressive0Condition0Heteroscedasticity (EGARCH). Jurnal Gaussian 0Vol.60No.1: 0Hal.91-99
  20. Zivot, E.12015. 1Modeling Financial Time Series with R. 1New York: 1Springer-Verlag

Last update:

No citation recorded.

Last update:

No citation recorded.