skip to main content

PENGENDALIAN MULTIVARIATE DENGAN DIAGRAM KONTROL MEWMA PADA ANALISIS SIX SIGMA

*Hananta Triatmaja  -  Departemen Statistika, Fakultas Sains dan Matematika, Undip, Indonesia
Mustafid Mustafid  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Triastuti Wuryandari  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2025 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

As one of the largest carbon steel producing industries, PT Raja Besi Semarang is always required to meet consumer needs by continuously improving its quality. Carbon steel is one of the manufacture of carbon steel pipes. There are three characteristics that are prioritized for attention, namely porosity, rust and cracks in order to improve the quality of carbon steel production. Six Sigma is a method for controlling quality. Six Sigma has a focus on reducing defects, achieving a standard of 3.4 defects per million opportunities. The purpose of this research is to identify the process of carbon steel production using the Six Sigma method with the MEWMA control chart and process capability to meet standards. The Multivariate Exponentially Weighted Moving Average (MEWMA) control chart is a tool used to control process averages in meeting standards. The results in this study obtained control using the MEWMA control chart using a lambda of 0.7 indicating that the process was statistically controlled and the sigma value for porosity was 3.5, rust was 4.5 and crack was 4.9. and has a process capability value of 1.733786 which indicates that the process is running according to standards.

Fulltext View|Download
Keywords: Baja Karbon ,Pengendalian Kualitas, Six Sigma, MEWMA, Analisis Kemampuan Proses Multivariate

Article Metrics:

  1. Ahsan, M., Arista, F. D., Ramadini, S. D. 2021. Pengendalian Kualitas Statistik pada Tepung Menggunakan Diagram pengendali Multivariat. INFERENSI Vol. 4, No. 2: Hal. 109 – 119
  2. Andespa, I. 2020. Analisis Pengendalian Mutu dengan Menggunakan Statistical Quality Control (SQC) pada PT.Pratama Abadi Industri (Jx) Sukabumi. E-Jurnal Ekonomi dan Bisnis Universitas Udayana Vol. 9, No. 2: Hal. 129-160
  3. Gaspersz, V. 2001. Metode Analisis Untuk Peningkatan Kualitas. Jakarta: PT Gramedia Pustaka Utama
  4. rcidiacono, A., Nuzzi, S. 2017. A Review of the Fundamentals on Process Capability, Process Performance, and Process Sigma, and an Introduction to Process Sigma Split. International Journal of Applied Engineering Research Vol. 12, No. 14: Hal. 4556 – 4570
  5. Haryatmi, S., & Guritno, S. 2008. Metode Statistika Multivariat. Jakarta: Universitas Terbuka
  6. Juran, J. M., & Godfrey, A. 1998. Juran's Quality Handbook Fifth Edition. New York: McGraw-Hill
  7. Kotler, P., & Keller, K. L. 2009. Manajemen Pemasaran Edisi 13 Jilid 1. Diterjemahkan oleh: Bob Sabran. Jakarta: Erlangga
  8. Montgomery, D. C. 2009. Introduction to Statistical Quality Control 6th Edition. United States of America: John & Wiley Sons, Inc
  9. Morrison, D. 1990. Multivariate Statistical Methods 3th Edition . New York: Mc Graw Hill Publishing Company
  10. Mustafid. 2017. Statistika Dalam Proyek Six Sigma. Semarang: UNDIP Press

Last update:

No citation recorded.

Last update:

No citation recorded.