skip to main content

PEMBENTUKAN PORTOFOLIO OPTIMAL SAHAM MENGGUNAKAN ESTIMASI ROBUST

*La Gubu orcid scopus  -  Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam , Indonesia
Dedi Rosadi orcid scopus  -  Departemen Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Gadjah Mada, Indonesia
Open Access Copyright 2025 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
This paper presents constructing an optimal stock portfolio using robust estimation. There are three robust estimations used in forming an optimal portfolio, namely the robust fast minimum covariance determinant (FMCD) estimation, the robust scale (S) estimation, and the robust constrained M (CM) estimation. Portfolio construction is also carried out using mean-variance (MV) classic estimation to see the advantages of portfolios with robust estimations. The performance of the portfolio formed is measured using the Sharpe ratio. The empirical study was carried out using daily closing price data for stocks included in the LQ 45 index for the February-July 2023 period. The empirical study shows that the portfolio's performance from the three robust estimations outperforms the portfolio produced using the classic MV estimation. Furthermore, it was found that the portfolio's performance using the robust CM estimation outperforms the portfolio using other robust estimations.
Fulltext View|Download
Keywords: risk; return; stock portfolio; robust estimation; portfolio’s performance
Funding: Universitas Halu Oleo

Article Metrics:

  1. Ceria, S. dan Stubbs, R. A. 2006. Incorporating estimation errors into portfolio selection: Robust portfolio construction. Journal of Asset Management, Vol. 7(2), 109–127. https://link.springer.com/chapter/10.1007/978-3-319-30794-7_12
  2. Chen, L. H. dan Huang, L. 2009. Portfolio optimization of equity mutual funds with fuzzy return rates and risks. Expert Systems with Applications, 36: 3720–3727
  3. Chopra, V. K. dan Ziemba, W. T. 1993. The Effect of Errors in Means, Variances, and Covariances on Optimal Portfolio Choice. Journal of Portfolio Management, Vol. 19(2), 6–11. https://people.duke.edu/~charvey/Teaching/BA453_2006/Chopra_The_effect_of_1993.pdf
  4. Davies, P. L. 1987. Asymptotic Behaviour of S-Estimates of Multivariate Location Parameters and Dispersion Matrices. The Annals of Statistics, Vol. 15(3), 1269–1292. https://pure.tue.nl/ws/portalfiles/portal/1669278/Metis214121.pdf
  5. DeMiguel, V. dan Nogales, F. J. 2009. Portfolio Selection With Robust Estimation. Operations Research, Vol. 57(3), 560–577. http://faculty.london.edu/avmiguel/DeMiguel-Nogales-OR.pdf
  6. Elton, E. J. dan Gruber, M J. 2014. Modern Portfolio Theory and Investment Analysis, 9th Edition, John Wiley and Sons, Inc., New York
  7. Filzmoser, P., Garrett, R. G., dan Reimann, C. 2005. Multivariate outlier detection in exploration geochemistry. Computers & Geosciences, 31: 579–587
  8. Ghahtarani, A., Sheikhmohammady, M., dan Najafi, A. A. 2018. Development of robust random variable for portfolio selection problem, Industrial Engineering & Management Systems, Vol. 17(4), 632–641
  9. Gnanadesikan, R. 1977. Methods for The Statistical Data Analysis of Multivariate Observations. New York: Wiley
  10. Kent, J. T. dan Tyler, D. E. 1991. Redescending M-Estimates of Multivariate Location and Scatter. The Annals of Statistic, Vol. 19(4), 2102-2119
  11. Lopuhaa, H. P. 1989. On the Relation between S-Estimators and M-Estimators of Multivariate Location and Covariance. The Annals of Statistics, Vol. 17(4), 1662–1683. https://projecteuclid.org/journals/annals-of-statistics/volume-17/issue-4/On-the-Relation-between-S-Estimators-and-M-Estimators-of/10.1214/aos/1176347386.full
  12. Markowitz, H. 1952. Portfolio Selection. The Journal of Finance, Vol. 7(1), 77–91. https://onlinelibrary.wiley.com/doi/10.1111/j.1540-6261.1952.tb01525.x
  13. Maronna, R. A., Martin, R. D., dan Yohai, V. J. 2006. Robust Statistics: Theory and Methods. John Wiley & Sons, Ltd
  14. Rousseeuw, P. dan Driessen, K. V. 1999. Fast Algorithm For Minimum Covariance Determinant Estimator. Technometrics, Vol. 41(3), 212–223
  15. Rousseeuw, P. dan Yohai, V. J. 1984. Robust Regression By Means of S estimators, Lecture Notes in Statistics: Robust and Nonlinear Time Series Analysis, Vol. 26, 256–272
  16. Sharpe, W. F. 1994. The Sharpe Ratio, The Jornal of Portfolio Management, Vol. 21, 49–58. http://dx.doi.org/10.3905/jpm.1994.409501
  17. Supandi, E. D. 2017. Pengembangan Model Portofolio Mean-Variance Melalui Metode Estimasi Robust dan Optimasi Robust. Disertasi. Departemen Matematika FMIPA Universitas Gadjah Mada, Yogyakarta
  18. Welsch, R. E. dan Zhou, X. 2007. Application of robust statistics to asset allocation models. REVSTAT–Statistical Journal, Vol. 5(1), 97–114. https://www.ine.pt/revstat/pdf/rs070106.pdf

Last update:

No citation recorded.

Last update:

No citation recorded.