skip to main content

DETERMINASI INDIKATOR PEMBANGUNAN KESEHATAN MASYARAKAT (IPKM) DI WILAYAH PESISIR MENGGUNAKAN MODEL STRUCTURAL DENGAN SAMPEL KECIL

*Riwi Dyah Pangesti orcid  -  Program Studi Statistika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Bengkulu, Jl. WR Soepratman, Kandang Limun Kota Bengkulu, 38371, Indonesia
Dyah Setyo Rini orcid scopus  -  Program Studi Statistika, FMIPA, Universitas Bengkulu, Indonesia
Winalia Agwil orcid scopus  -  Program Studi Statistika, FMIPA, Universitas Bengkulu, Indonesia
Septiara Santi Anggriany  -  Program Studi Statistika, FMIPA, Universitas Bengkulu, Indonesia
Muhammad Kevin Rido Ariendra  -  Program Studi Statistika, FMIPA, Universitas Bengkulu, Indonesia
Open Access Copyright 2025 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Public health in coastal areas is a crucial aspect of a nation's development but faces unique challenges due to geographical, demographic, and environmental factors. This study seeks to analyze the factors influencing the Health Development Index (HDI) in coastal areas using the Structural Equation Modeling (SEM) approach with the Partial Least Square (PLS) method for a small sample. The analyzed variables include Environmental Health, Health Behavior, Health Services, Poverty Status, and the HDI, as well as their influence on Health Status. This study utilizes secondary data from the 2018 Riskesdas report and BPS publications in the southern part of Sumatra. The analysis results show that Environmental Health has a significant effect of -0,45 and Health Behavior has an effect of -0,30 on Health Status. However, Health Services, Poverty Status, and HDI do not show significant effects on Health Status. By gaining a deeper understanding of the determinants of IPKM in coastal areas, this study is expected to contribute to the development of more targeted and effective health policies. The PLS-SEM approach used in this study is also expected to serve as a reference for other researchers in applying structural models to small samples.

Note: This article has supplementary file(s).

Fulltext View|Download |  common.other
Plagiarism check proof
Subject
Type Other
  Download (2MB)    Indexing metadata
Keywords: Structural Equation Modeling; Partial Least Square; PLS-SEM; Health Development Index
Funding: Universitas Bengkulu

Article Metrics:

  1. Anekawati, A., Suharyanto, & Yuliati. (2017). Structural equation modelling with three schemes estimation of score factors on partial least square (Case study: The quality of education level SMA/MA in Sumenep Regency). Journal of Physics: Conference Series, 855(1), 012006. https://doi.org/10.1088/1742-6596/855/1/012006
  2. Badan Perencanaan Pembangunan Nasional (Bappenas). (2020). Laporan Pembangunan Wilayah Pesisir. Jakarta: Bappenas
  3. Badan Pusat Statistik (BPS). (2020). Indeks Pembangunan Manusia 2020. Jakarta: BPS
  4. Bollen KA. 1989. Structural Equation Modeling with Latent Variables. John Wiley and Sons, New York
  5. Chin WW. 2010. How to write up and report PLS analyses. Di dalam: Vinzi VE, Chin WW, Henseler J, Wang H. Handbook of Partial Least Squares: Concepts, Methods, and application. Vinzi VE, Chin WW, Henseler J, Wang H. Jerman (DE): 645-689. Springer
  6. Efron B, Tibshirani RJ. 1993. An Introduction to the Bootstrap. New York: Chapman & Hall
  7. Garson, G. D. (2016). Partial Least Squares: Regression & Structural Equation Models (2016 Edition). Statistical Associates Publishing
  8. Ghozali I. 2008. Structural Equation Modeling Metode Alternatif dengan Partial Least Square (PLS). Semarang (ID): Program Magister Manajemen, Universitas Diponegoro
  9. Hair, J. F. Jr., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2014). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). SAGE Publications
  10. Jaya M, Sumertajaya IM. 2008. Pemodelan persamaan struktural dengan partial least square. Prosiding Seminar Nasional Matematika dan Pendidikan Matematika. Bogor (ID):118-132
  11. Kemenkes RI. 2018. Laporan Provinsi Bengkulu Riskesda 2018. Lembaga Penerbit Badan Penelitian dan Pengembangan Kesehatan
  12. Monecke, A., & Leisch, F. (2012). semPLS: Structural Equation Modeling Using Partial Least Squares. Journal of Statistical Software, 48(3). https://www.jstatsoft.org/
  13. Pangesti, RD. 2016. Partial Least Square Structural Equation Modeling (PLS SEM) Pada Data Biner. Tesis pada Program Pascasarjana di Departemen Statistika IPB. Bogor: Indonesia
  14. Sholiha, EUN dan Salamah, M. 2015. Structural Equation Modeling-Partial Least Square untuk Pemodelan Derajat Kesehatan Kabupaten/Kota di Jawa Timur (Studi Kasus Data Indeks Pembangunan Kesehatan Masyarakat Jawa Timur 2013). Jurnal Sains dan Seni ITS, 4(2): 169-174
  15. Suparmi, N., Kusumawardani, N., Nambiar, D., & Trihono, P. (2018). Subnational regional inequality in the public health development index in Indonesia. Global Health Action, 11(1), 1500133. https://doi.org/10.1080/16549716.2018.1500133
  16. Trujillo, G. S. (2009). PATHMOX approach: Segmentation trees in Partial Least Squares Path Modeling [Tesis master, Universitat Politècnica de Catalunya]
  17. Tenenhaus M, Vinzi VE, Cathelin YM, Lauro C. 2004. PLS path modeling. Computational Statistics & Data Analysis. 48(2005):159-205. 10.1016.j/csda.2004.03.005
  18. Wold, H. (1982). Soft modeling: The basic design and some extensions. Systems Under Indirect Observation, 2, 1-54

Last update:

No citation recorded.

Last update:

No citation recorded.