skip to main content

ANALISIS SURVIVAL PASIEN DIABETES MELITUS TIPE-II MENGGUNAKAN MODEL REGRESI HAZARD ADITIF LIN-YING

*Harum Tsania Salsabila  -  Departemen Statistika, Fakultas Sains dan Matematika, Undip, Indonesia
Triastuti Wuryandari  -  Departemen Statistika, Fakultas Sains dan Matematika, Undip, Indonesia
Sudarno Sudarno  -  Departemen Statistika, Fakultas Sains dan Matematika, Undip, Indonesia
Open Access Copyright 2025 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Survival analysis is a statistical method used to analyze data whose response variable is time an event occurs. Lin Ying Additive Hazard Regression is a method that can be used to determine the effect of the independent variable on the response variable in survival analysis. This method can be used to determine differences in risk and there is no proportionality assumption that must be met so that it can be used for certain data. The purpose of this research is to analyze the characteristics of patients, determine the probability of improving the patient's clinical condition, and determine the factors that influence the length of stay of diabetic patients at RSUD R.A. Kartini Jepara. The response variable used is the length of time the patient was hospitalized. The independent variables were age, gender, history of hypertension, history of heart disease, history of stroke, history of kidney disease, history of obesity, and history of other diseases. The analysis results from Lin Ying additive hazard regression obtained factors that influence the time to improve clinical conditions, namely history of heart disease, history of kidney disease, history of stroke, and history of other diseases.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
CTA Form
Subject
Type Research Instrument
  Download (259KB)    Indexing metadata
Keywords: Survival Analysis; Hazard Additive Lin Ying; Diabetic

Article Metrics:

  1. Dewi, A.Y., Dwidayati, N.K., dan Agoestanto, A. 2020. Analisis Survival Model Regresi Cox Dengan Metode Mle Untuk Penderita Diabetes Mellitus. Unnes Journal Of Mathematics, 9(1), pp.31-40
  2. Hastuti, A.N., Wilandari, Y., dan Sudarno. 2021. Analisis Laju Perbaikan Kondisi Klinis Pasien Stroke Menggunakan Regresi Hazard Aditif Lin-Ying. Jurnal Gaussian Vol. 11, No. 2: 206-217
  3. International Diabetes Federation. 2021. IDF Diabetes Atlas Tenth edition. Brussels, Belgium : Internationals Diabetes Federation
  4. Kementrian Kesehatan RI (KEMENKES RI). 2020. Diabetes. Informasi Pusat Data dan Informasi Kementrian Kesehatan RI (INFODATIN). Indonesia: Kementrian Kesehatan RI
  5. Klein, J.P. dan Moeschberger, M.L. 2003. Survival Analysis Techniques for Censored and Truncated Data Second Edition. Springer-Verlag, New York, Inc
  6. Kleinbaum, D.G. dan Klein, M. 2005. Survival Analysis A Self-Learning Text. New York: Spinger
  7. Lin, D.Y. dan Ying, Z. 1994. Semiparametric Analysis of the Additive Risk Model. Jurnal Biometrika Vol. 1, No.81:61-71
  8. Perkumpulan Endokrinologi Indonesia (PERKENI). 2021. Pedoman Pengelolaan dan Pencegahan Diabetes Melitus Tipe 2 Dewasa di Indonesia. Indonesia: PB. PERENI
  9. Ramadhani, K.I. 2020. Analisis Survival Pada Pasien Diabetes Melitus Tipe-2 Menggunakan Metode Kaplan Meier Dan Uji Log Rank (Studi Kasus: Di RS PKU Muhammadiyah Yogyakarta)
  10. Ulinnuha, M. 2018. Perbandingan Regresi Hazard Menggunakan Metode Cox Proportional Hazard dan Lin-Ying. Tugas Akhir. Yogyakatra: Universitas Islam Indonesia
  11. Urfiyyanti, A., Maruddani, D.A.I., dan Sudarno. 2021. Regresi Hazard Aditif Lin Ying untuk Analisis Perbaikan Kondisi Klinis Pasien Kanker Payudara. Jurnal Endurane: Kajian Ilmiah Problema Kesehatan Vol. 9, No. 4: 309-318
  12. Wuryandari, T., Kartiko, S.H., dan Danardono. 2020. Analisis Survival untuk Durasi Proses Kelahiran Menggunakan Model Regresi Hazard Aditif. Jurnal Gaussian Vol. 9, No.4:402-410

Last update:

No citation recorded.

Last update:

No citation recorded.