skip to main content

FAKTOR-FAKTOR YANG MEMPENGARUHI STUNTING DI INDONESIA: ANALISIS PRINCIPAL COMPONENT REGRESSION

Rifdah Fadhilah  -  Department of Mathematics, Mathematics and Natural Science Faculty, University of Mataram, Jl. Majapahit No.62, Gomong, Kec. Selaparang, Kota Mataram, Nusa Tenggara Bar. 83115, Indonesia
*Dina Eka Putri  -  Department of Statistics, Faculty of Mathematics and Natural Sciences, University of Mataram, Jl. Majapahit No.62, Gomong, Selaparang, Mataram, Nusa Tenggara Barat 83115, Indonesia
Humami Syifa Amanda  -  Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Mataram, Jl. Majapahit No.62, Gomong, Selaparang, Mataram, Nusa Tenggara Barat 83115, Indonesia
Open Access Copyright 2025 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Stunting, characterized by chronic malnutrition due to undernutrition, is a significant public health problem in Indonesia, with a prevalence rate of 21.5% in 2023-a slight decrease from 21.6% the previous year. The large impact of stunting on child health has made it a priority in global and national agendas. This study which aims to identify the causes of stunting to inform targeted policy interventions. Given the multicollinearity among the influencing factors, traditional regression models often fail. Principal Component Regression (PCR) is used to overcome multicollinearity and improve the predictive power of the model. Using secondary data from the 2023 Indonesian Health Survey (IHS), this study identified two principal components from seven initial predictors assumed to influence stunting: Exclusive breastfeeding, low birth weight, undernourished maternal food intake, undernourished child food intake, complete basic immunization, proper sanitation, and hereditary diseases. Component 1 with an eigenvalue of 3.271, explained 53.1% of the variance, while Component 2 with an eigenvalue of 1.425, explained 73.5% of the variance. The PCR method effectively addresses multicollinearity, as evidenced by Variance Inflation Factor (VIF) < 5. This study highlights the importance of using advanced statistical methods for robust policy development in the fight against stunting.
Fulltext View|Download
Keywords: Principal Components; Indonesia; Stunting Prevalance; PCR; IHS

Article Metrics:

  1. Dinas Kesehatan Papua. (2024). Menkes Budi Soroti Lambatnya Penurunan Angka Stunting di Indonesia. https://dinkes.papua.go.id/menkes-budi-soroti-lambatnya-penurunan-angka-stunting-di-indonesia
  2. Draper, N. R., & Smith, H. (1998). Applied Regression Analysis. In Wiley Series in Probability and Statistics (1st ed.). Wiley. https://onlinelibrary.wiley.com/doi/book/10.1002/9781118625590
  3. Ghozali, I. (2016). Aplikasi Analisis Multivariete dengan Program IBM SPSS 23 (8th ed.). Univ. Diponegoro Press
  4. Gujarati, D. N., & Porter, D. C. (2009). Basic Econometrics. In The McGraw-Hill series Economics (5. ed). McGraw-Hill Irwin
  5. James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning: With Applications in R. In Springer texts in statistics. Springer
  6. Johnson, R. A., & Wichern, D. W. (2007). Applied Multivariate Statistical Analysis (6. ed). Pearson/Prentice Hall
  7. Kementerian Kesehatan RI. (2022). Faktor-faktor Penyebab Kejadian Stunting pada Balita. https://yankes.kemkes.go.id/view_artikel/1529/faktor-faktorpenyebab-kejadian-stunting-pada-balita
  8. Kementerian Kesehatan RI. (2023). Prevalensi Stunting di Indonesia Turun ke 21,6% dari 24,4%. https://sehatnegeriku.kemkes.go.id/baca/rilis-media/20230125/3142280/prevalensi-stunting-di-indonesia-turun-ke-216-dari-244
  9. Kuncoro, M. (2007). Metode Kuantitatif : Teori dan Aplikasi untuk Bisnis dan Ekonomi. UPP STIM YKPN
  10. Kutner, M. H., Nachtsheim, C. J., Neter, J., Li, W., & Nachtsheim, C. (2005). Applied Linear Statistical Models. In McGraw-Hill/Irwin series Operations and decision sciences (5. ed., internat. ed). McGraw-Hill
  11. Mattjik, A. A., & Sumertajaya, I. M. (2011). Sidik Peubah Ganda. IPB PRESS
  12. Mayasari, D., Indriyani, R., & Sutarto. (2018). Stunting, Faktor Resiko dan Pencegahannya. Jurnal Agromedicine, 5(1), 540–545
  13. Montgomery, D. C., Peck, E. A., & Vining, G. G. (2012). Introduction to Linear Regression Analysis. In Wiley series in probability and statistics (5th ed). Wiley
  14. Nurhadi, D. (2018). Metode Statistik Principal Component Regression dalam Analisis Hubungan Kuantitatif Struktur dan Aktivitas Penghambat Lipoksigenase Senyawa Turunan Kurkumin. Teknologi : Jurnal Ilmiah Dan Teknologi, 1(1), 60–71. https://doi.org/10.32493/teknologi.v1i1.1418
  15. Prasetyo, R. A., & Helma. (2022). Analisis Regresi Linear Berganda Untuk Melihat Faktor Yang Berpengaruh Terhadap Kemiskinan Di Provinsi Sumatera Barat. Journal of Mathematics UNP, 7(2), 62–68. https://doi.org/10.24036/unpjomath.v7i2.12777
  16. Pratama, N. B., Purnomo, E. P., & Agustiyara, A. (2020). Sustainable Development Goals (SDGs) dan Pengentasan Kemiskinan di Daerah Istimewa Yogyakarta. SOSIOHUMANIORA: Jurnal Ilmiah Ilmu Sosial Dan Humaniora, 6(2), 64–74. https://doi.org/10.30738/sosio.v6i2.8045
  17. Santoso, S. (2001). Mengolah Data Statistik Secara Profesional. PT. Elex Media Komputindo. Jakarta
  18. Sembiring, R. K. (1995). Analisis Regresi. ITB Press
  19. Susilawati, S., & Didiharyono, D. (2023). Application of Principal Component Regression in Analyzing Factors Affecting Human Development Index. Jurnal Varian, 6(2), 199–208. https://doi.org/10.30812/varian.v6i2.2366
  20. World Population Review. (2023). Indonesia Population 2022. https://worldpopulationreview.com
  21. Yuwanti, Y., Mulyaningrum, F. M., & Susanti, M. M. (2021). Faktor-Faktor yang Mempengaruhi Stunting pada Balita di Kabupaten Grobogan. Jurnal Keperawatan Dan Kesehatan Masyarakat Cendekia Utama, 10(1), 74–84. https://doi.org/10.31596/jcu.v10i1.704

Last update:

No citation recorded.

Last update:

No citation recorded.