skip to main content

COMPARISON OF NEGATIVE BINOMIAL SAR, SEM, AND SARMA METHODS IN MODELING THE NUMBER OF MALNUTRITION CASES AMONG TODDLERS IN CENTRAL JAVA

*Andi Rosilala orcid  -  Department of Statistics, Faculty of Science and Technology, Universitas Terbuka, Tangerang Selatan, Banten, Indonesia
Siti Hadijah Hasanah orcid  -  Department of Statistics, Faculty of Science and Technology, Universitas Terbuka, Tangerang Selatan, Banten, Indonesia
Open Access Copyright 2025 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Malnutrition among toddlers remains a critical public health issue in Indonesian, with high rates of stunting, wasting, and underweight. The 2023 Indonesian Health Survey in Central Java reports 20.7% stunting, 7.1% wasting, 14.4% underweight, and 4.2% overweight, closely reflecting national trends. This study employs spatial analysis to examine malnutrition patterns at Central Java, finding overdispersion in the data (mean = 69.8; variance = 1033.4), which supports the use of the Negative Binomial model over Poisson. Moran’s I and Getis-Ord G tests confirm spatial dependence. Among the spatial models tested—SAR, SEM, and SARMA—the SARMA-NB model was the most suitable, with optimal fit measures (AIC = 299.37, MAD = 9.74, MAPE = 15.88, RMSE = 12.77). Significant predictors include the percentage of children with complete immunization, exclusive breastfeeding rates, per capita meat consumption, access to sanitation, health insurance with contribution assistant coverage, poverty levels, low birth weight incidence, and inadequate housing. The findings emphasize the importance of spatial analysis in understanding malnutrition risk factors.

Note: This article has supplementary file(s).

Fulltext View|Download |  Source Text
Syntax R
Subject
Type Source Text
  View (53KB)    Indexing metadata
Keywords: Negative Binomial; Overdispersion; Spatial Regression

Article Metrics:

  1. Amelia, M., Djuraidah, A., dan Anisa, R. (2023). “Pendugaan Faktor – Faktor yang Memengaruhi Kasus Stunting di Jawa Barat Tahun 2021 Menggunakan Regresi Spasial Binomial Negatif”. Jurnal Matematika, Statistika, dan Komputasi. Volume 20, Nomor 1
  2. Anselin L. (1988). Spatial Econometrics: Methods and Models. Dordrecht: Academic Publisher
  3. Djuraidah, A. 2020. Monograph Penerapan dan Pengembangan Regresi Spasial dengan Studi Kasus pada Kesehatan, Sosial, dan Ekonomi. Bogor: IPB Press
  4. Djuraidah, A. dan Anisa R. (2023). “Analisa Statistika untuk Data Geospasial”. Bogor: IPB Press
  5. Fatmah, I. N. dan Sutanto, H. T. (2013). “Pemodelan Faktor – Faktor yang Mempengaruhi Balita Gizi Buruk di Jawa Timur dengan Pendekatan Regresi Spasial”. MATHunesa. Volume 2 Nomor 3
  6. Glaser, S., (2017). A Review of Spatial Econometric Models for Count Data. Hohenheim Discussion Papers in Business, Economics and Social Sciences, Volume 19
  7. Golgher, A. B., dan Voss, P. R. (2016). How to Interpret the Coefficients of Spatial Models: Spillovers, Direct and Indirect Effects. Spatial Demography, Volume 4
  8. Hilbe, J. M., (2011). Negative Binomial Regression Second Edition. New York: Cambridge University Press
  9. Kementerian Kesehatan RI. “Survei Kesehatan Indonesia 2023”. https://www.badankebijakan.kemkes.go.id/hasil-ski-2023/
  10. Keputusan Menteri Perencanaan Pembangunan Nasional/Kepala Badan Perencanaan Pembangunan Nasional Tentang Penetapan Rencana Aksi Nasional Pangan dan Gizi Tahun 2021-2024
  11. Mustika, R. dan Sulistyawan, E. (2019). “Spasial Error Model untuk Balita Gizi Buruk Di di Provinsi Jawa Timur Tahun 2016”. Jurnal Riset dan Aplikasi Matematika Volume 3 Nomor 1
  12. Pawitan, Y. (2001). In all Likelihood: Statistical Modelling and Inference Using Likelihood. Oxford: Clarendon Press
  13. Ramadani, I. R., Rahmawati, R., dan Hoyyi, A. (2013). “Analisis Faktor-Faktor yang Mempengaruhi Gizi Buruk Balita di Jawa Tengah dengan Metode Spatial Durbin Model. Jurnal Gaussian. Volume 2 Nomor 4
  14. Rohimah, S. R., Nuraidi, M., dan Djuraidah, A. (2011). “Model Spasial Autoregresif Poisson untuk Mendeteksi Faktor-Faktor yang Berpengaruh terhadap Jumlah Penderita Gizi Buruk di Provinsi Jawa Timur”. SNS, Volume 2
  15. Sari, D. N. E., Hayati, M. N., dan Wahyuningsih, S. (2020). “Model Spatial Autoregressive Moving Average (SARMA) pada Data Jumlah Kejadian Demam Berdarah Dengue (DBD) di Provinsi Kalimantan Timur dan Tengah Tahun 2016”. Jurnal EKSPONENSIAL Volume 11 Nomor 1
  16. Sauddin, A., Auliah, N., dan Alwi, W. (2020). “Pemodelan Jumlah Kematian Ibu di Provinsi Sulawesi Selatan Menggunakan Regresi Binomial Negatif”. Jurnal Matematika dan Statistika serta Aplikasinya Volume 8 Nomor 2
  17. Usada, K. N., Wanodya, S. K., dan Trisna, N. (2021). “Analisis Spasial Gizi K Analisis Spasial Gizi Kurang Balita di K ang Balita di Kota Tangerang Tahun 2019”. Jurnal Biostatistik, Kependudukan, dan Informatika Kesehatan. Volume 2 Nomor 1
  18. Wahyuni, W. (2011). “Penaksir Parameter Model Regresi Binomial Negatif pada Kasus Overdispersi”. Depok: Universitas Indonesia
  19. UNICEF. “Mengatasi tiga beban malnutrisi di Indonesia” https://www.unicef.org/indonesia/id/gizi?gad_source=1&gclid=CjwKCAjwyfe4BhAWEiwAkIL8sKzUXUhJarlsVgK-YVBsMWOMrC-IwekSLUX7YLXl1Jrc-JZrvzrZDhoCN4UQAvD_BwE

Last update:

No citation recorded.

Last update:

No citation recorded.