skip to main content

ANALISIS RESPON INDEKS DOLAR TERHADAP PASAR SAHAM AMERIKA MENGGUNAKAN MODEL VECTOR AUTO REGRESSIVE

*Lailatul Maziyah Wildan Mufaridho  -  Sains Aktuaria, Universitas Darunnajah, Indonesia
Paiz Jalaludin  -  Program Studi Sains Akturia, Universitas Darunnajah, Indonesia
Royyan Amigo  -  Program Studi Sains Akturia, Universitas Darunnajah, Indonesia
Open Access Copyright 2025 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

The US Dollar Index (DXY) reflects the strength of the US Dollar and is often used as an indicator to measure changes in its value. Changes in the DXY also exert direct pressure on US stock markets, such as NASDAQ, S&P 500, and AAPL. Current trends indicate that US tensions with other countries are affecting the dollar's attractiveness as the world's dominant currency. Furthermore, US political dynamics, such as the 2024 presidential election, add complexity, ultimately impacting the US stock market. Sudden fluctuations in the US Dollar can cause shocks, leading to increased stock market volatility. One effective analytical tool for studying this relationship is the Impulse Response Function (IRF). Based on Vector Auto-Regression (VAR), IRF facilitates analysis of how the US stock market responds to shocks in the dollar's value over a certain period, and vice versa. When the DXY experiences a shock, its response to NASDAQ, S&P 500, and AAPL tends to oscillate positively and negatively, stabilizing around the third period on average. Conversely, when the US Dollar Index faces a shock, the responses of NASDAQ and S&P 500 are more stable compared to AAPL's response

Fulltext View|Download
Keywords: VAR;IRF;Indeks Dolar, Saham

Article Metrics:

  1. Aktivani, S. (2021) ‘Uji Stasioneritas Data Inflasi Kota Padang Periode 2014-2019’, Jurnal statistika Industri dan Kompetasi, 6(1), pp. 26–33
  2. Barnichon, R. and Matthes, C. (2018) ‘Functional Approximation of Impulse Responses’, Journal of Monetary Economics, 99, pp. 41–55. Available at: https://doi.org/10.1016/j.jmoneco.2018.04.013
  3. Caraka, R.E. et al. (2019) ‘Prediction of status particulate matter 2.5 using state Markov chain stochastic process and hybrid VAR-NN-PSO’, IEEE Access, 7, pp. 161654–161665. Available at: https://doi.org/10.1109/ACCESS.2019.2950439
  4. Febrianti, D. R., Tiro, M. A., & Sudarmin, S. (2021) ‘Metode Vector Autoregressive (VAR) dalam Menganalisis Pengaruh Kurs Mata Uang Terhadap Ekspor Dan Impor Di Indonesia’, VARIANSI: Journal of Statistics and Its application on Teaching and Research, 3(1), p. 23. Available at: https://doi.org/10.35580/variansiunm14645
  5. Giamouzi, M. (2008) ‘City , University of London Institutional Repository’, 34(2019), pp. 51–79. Available at: http://openaccess.city.ac.uk/1189/
  6. Gujarati, D. N., & Porter, D.C. (2009) Basic Econometrics. Fifth Edit. McGraw-Hill In
  7. Invesnesia (n.d). Apa Itu NASDAQ? Indeks & Bursa Saham Elektronik Terbesar. [Online] Tersedia di: www.Invesnesia.com [Diakses pada: 1 Desember 2024]
  8. Investing (n.d). Data harga saham NASDAQ, AAPL, S&P500, dan Indeks Dolar AS (DXY). [Online] Tersedia di: www.Investing.com [Diakses pada: 1 Desember 2024]
  9. Iskandar, I. (2019) ‘Analisis Vector Autoregression (Var) Terhadap Interrelationship Antara Financing Deposit Ratio (Fdr) Dan Return on Asset (Roa) Pada Bank Syariah Di Indonesia’, Jurnal Ekonomi Syariah, Akuntansi dan Perbankan (JESKaPe), 3(2), pp. 19–39. Available at: https://doi.org/10.52490/jeskape.v3i2.430
  10. Khalil, M. and Strobel, F. (2024) ‘US trade policy and the US dollar’, Journal of International Economics, 151(January 2022), p. 103970. Available at: https://doi.org/10.1016/j.jinteco.2024.103970
  11. Liu, F. et al. (2016) ‘A vector auto regression model applied to real estate development investment: A statistic analysis’, Sustainability (Switzerland), 8(11), pp. 1–19. Available at: https://doi.org/10.3390/su8111082
  12. Lütkepohl, H. (2007) New Introduction to Multiple Time Series Analysis., Springer Science & Business Media
  13. Prahutama, A. et al. (2019) ‘Modelling Inflation Sectors in Indonesia Using Vector Autoregressive (VAR)’, Jurnal ILMU DASAR, 20(1), p. 47. Available at: https://doi.org/10.19184/jid.v20i1.7259
  14. Rahmawati, A. et al. (2017) ‘Structural Vector Autoregressive Untuk Analisis Dampak Shock Nilai Tukar Rupiah Terhadap Dolar Amerika Serikat Pada Indeks Harga Saham Gabungan’, Jurnal Gaussian, 6(3), pp. 291–302. Available at: http://ejournal-s1.undip.ac.id/index.php/gaussian
  15. Sihombing, P.R. et al. (2022) ‘Implementasi Model Panel Var Pada Hubungan Inflasi Dan Pertumbuhan Jumlah Uang Beredar’, Jurnal Bayesian : Jurnal Ilmiah Statistika dan Ekonometrika, 2(2), pp. 116–124. Available at: https://doi.org/10.46306/bay.v2i2.34
  16. Ziegel, E.R. (2002) Analysis of Financial Time Series, Technometrics. Available at: https://doi.org/10.1198/tech.2002.s96
  17. Zuhroh, I., Kusuma, H. and Kurniawati, S. (2018) ‘An Approach of Vector Autoregression Model for Inflation Analysis in Indonesia’, Journal of Economics, Business, & Accountancy Ventura, 20(3), pp. 261–268. Available at: https://doi.org/10.14414/jebav.v20i3.1019

Last update:

No citation recorded.

Last update:

No citation recorded.