skip to main content

PENERAPAN METODE MULTINOMIAL NAÏVE BAYES DENGAN SELEKSI FITUR INFORMATION GAIN UNTUK ANALISIS SENTIMEN TERHADAP LAYANAN INDIHOME

*Laurentina Adinda Puspita Sari  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
mustafid mustafid  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Triastuti Wuryandari  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2025 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

MyIndihome is one of PT Telkom Indonesia's innovations in the form of an application to provide the best service to customers regarding indihome products. Indihome users who continue to increase make PT Telkom must be ready to face complaints that are usually channeled through social media, such as on the Google Play site of the MyIndihome application. Sentiment analysis is needed to determine the classification of customer reviews through the MyIndihome application which is carried out using the Multinomial Naïve Bayes method. The application of this method was developed by selecting information gain features to obtain relevant features. The Multinomial Naïve Bayes method relies on strong independence assumptions and is straightforward to implement for text classification. This method considers both the presence and frequency of words. Performance evaluation uses a confusion matrix, revealing that the Multinomial Naïve Bayes method achieves 93% accuracy without feature selection and 95% with information gain feature selection. This indicates that incorporating information gain can enhance the classification accuracy of MyIndihome customer reviews.

Fulltext View|Download
Keywords: MyIndihome; Sentiment Analysis; Multinomial Naïve Bayes; Information Gain

Article Metrics:

  1. Feldman, R., Sanger, J. 2007. The Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data. Cambridge University Press
  2. Han, J., Kamber, M., Pei, J. 2001. Data Mining : Concepts and Techniques Third Edition. Morgan Kaufmann
  3. Huang, X., Wu, Q. 2013. Micro-blog Commercial Word Extraction Based On Improved TF-IDF Algorithm. International Conference of IEEE, Hal : 1 – 5
  4. Indonesia, Machine Vision. 2021. Transformasi Digital Apakah Sama Dengan Industri 4.0. https://www.machinevision.global/post/transformasi-digital-apakah-sama-dengan-industri-4-0-1?lang=id. Diakses: 5 Januari 2023
  5. Liu, B. 2012. Sentiment Analysis and Opinion Mining. Morgan & Claypool
  6. Manning, C. D., Raghavan, P., Schutze, H. 2009. An Introduction to Information Retrieval. England: Cambridge University Press
  7. Maulida, I., Suyatno, A., Hatta, H. R. 2016. Seleksi Fitur Pada Dokumen Abstrak Teks Bahasa Indonesia Menggunakan Metode Information Gain. JSM STMIK Mikroskil, Vol. 17, No. 2 : Hal. 249 - 258
  8. McCallum, A., Nigam, K. 1998. A Comparison of Event Models for Naive Bayes Text Classification. In AAAI-98 workshop on learning for text categorization, Vol. 752, Hal. 41 - 48
  9. Miley, F., Read, A. 2011. Using word clouds to develop proactive learners. Journal of the Scholarship of Teaching and Learning, Vol. 11, No. 2, Hal. 91 - 110
  10. MyIndihome. 2019. About My Indihome. https://indihome.co.id/about-myindihome. Diakses : 3 Januari 2023
  11. Powers, D. 2011. EVALUATION: FROM PRECISION, RECALL AND F-MEASURE TO ROC,INFORMEDNESS, MARKEDNESS & CORRELATION. Hal. 37 - 63

Last update:

No citation recorded.

Last update:

No citation recorded.