skip to main content

PENGGUNAAN INDEX CALINSKI-HARABASZ PADA CLUSTERING K–MEDOIDS ALGORITHM UNTUK PENGGOLONGAN KABUPATEN/ KOTA DI PROVINSI JAWA TENGAH BERDASARKAN KARAKTERISTIK PENDUDUK MISKIN

Leviana Agita Sari  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Arief Rachman Hakim  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
*agus rusgiyono  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2025 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Poverty is a problem that occurs almost every year. The government is trying hard to reduce poverty because the poverty rate is a measure of the success of a region. Clustering analysis can assist the government in providing targeted assistance. The k-medoids method is a non-hierarchical clustering method for classifying n objects into k clusters based on similar characteristics. This clustering algorithm uses the medoid as its cluster center. The k-medoids method used to overcome the problem of outliers and determine the optimal number of clusters using cluster validation. This research used Index Calinksi-Harabasz. Based on the result of the clustering, the optimal cluster was obtained k=2 using k-medoids method and cluster validation Index Calinksi-Harabasz of 31,53654. Cluster 1 consists of 22 districts or cities and in cluster 2 consists of 13 districts or cities.

Fulltext View|Download
Keywords: Poverty ,Clustering, K-Medoids Clustering, Index Calinski-Harabasz.

Article Metrics:

  1. Afandi, Ta’fif Lukman; Warsito, Budi; Santoso, Rukun.2022. Implementasi K-Medoids dan Model Weighted Length Recency Frequency (W-LRFM) Untuk Segmentasi Pelanggan Dilengkapi Gui R. Jurnal Gaussian, Vol. 11, No. 3
  2. Azizah, Anestasya Nur; Widiharih, Tatik; Hakim, Arief Rahman.2022.Kernel K-Means Clustering Untuk Pengelompokan Sungai di Kota Semarang Berdasarkan Faktor Pencemaran Air. Jurnal Gaussian, Vol. 11, No. 2
  3. Arora, P., Deepali, dan Varshney, S. 2015. Analysis of K-Means and K-Medoids Algorithm for Big Data. Procedia Computer Science Vol. 78
  4. [BPS]. Badan Pusat Statistik.2022. Data dan Informasi Kemiskinan Kabupaten/
  5. Kota 2022. Jawa Tengah
  6. Barnett, V., dan Lewis, T. 1994. Outliers in Statistical Data, Wiley Series in Probability and Mathematical Statistics, New York
  7. Folzmiser, P. 2005. Identification of Multivariate Outliers. A Performance Study. Australian Journal of Statistics Vol 34. No. 2
  8. Gujarati, Damodar. 2009. Dasar-Dasar Ekonometrika Edisi 5. Jakarta. Salemba empat
  9. Guerra, L., Robles, V., Bielza, C., & Larranaga, P. 2012. A Comparion of Clustering Quality Indices Using Outliers and Noise. Intelligent Data
  10. Anlysis. 16
  11. Harmadi, Sonny Harry B. 2007. Pengangguran, Kemiskinan dan Pertumbuhan Ekonomi Indonesia. Dalam Warta Demografi tahun ke 37 No 3. Jakarta. Lembaga Demografi Universitas Indonesia
  12. Hair, J. F., Black, W. C., Babin, B. J., dan Anderson, R. E. 2010. Multivariate Data Analysis, Seventh edition. New Jersey: Prentice Hall International, Inc
  13. Johnson, R.A., & Wichen, D.W. 2007. Applied Multivariate Statistical Analysis Sixth Edition. New Jersey: Prentice Hall
  14. Khairati, A. F., Adlina, A. A., Hertono, G. F., Handari, B. D. 2019. Kajian Indeks Validitas pada Algoritma K-Means Enhanced dan K-Means MMCA, PRISMA, Prosiding Seminar Nasional Matematika 2. ISSN 2613-9189
  15. Kaufman, L. dan Rousseeuw,P.J.1990. Finding Groups in Data. An
  16. Introduction to Cluster Analysis. John Wiley, New York
  17. Primartha, R. 2021. Algoritma Machine Learning. Bandung. Informatika
  18. Suryawati. 2004. Teori Ekonomi Mikro. UPP. AMP YKPN. Yogyakarta. Jarnasy
  19. Suwadi, Widodo. 2013. Ekonomi Sumber Daya Dan Lingkungan
  20. Suyanto.2017. Data Mining untuk Klasifikasi dan Klasterisasi Data.Bandung.Informatika
  21. Simamora, B. 2005. Analisis Multivariat Pemasaran. Jakarta. PT Gramedia Pustaka Utama
  22. Vercellis, Carlo. 2009. Business intelligence: Datamining and optimization for decision making. Chichester: John Wiley& Sons
  23. Widarjono, A. 2010. Analisis Statistika Multivariat Terapan. Yogyakarta: UPP STIM YKPN

Last update:

No citation recorded.

Last update:

No citation recorded.