slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor
PREDIKSI NILAI ASET MENGGUNAKAN MODEL GEOMETRIC BROWNIAN MOTION DAN MODEL VARIANCE GAMMA | Hoyyi | Jurnal Gaussian skip to main content

PREDIKSI NILAI ASET MENGGUNAKAN MODEL GEOMETRIC BROWNIAN MOTION DAN MODEL VARIANCE GAMMA

*Abdul Hoyyi orcid scopus  -  Department of Statistics, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Rita Rahmawati  -  Department of Statistics Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Open Access Copyright 2024 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

The basic assumption in the Black-Scholes-Merton model is that assets that generate returns are normally distributed. Asset price movements fluctuate greatly so the data is not normally distributed. This paper proposes a forecasting method using the Variance Gamma (VG) model. The return data of traded assets in Indonesia shows excess kurtosis and tails in the return distribution so the performance of the geometric Brownian motion (GBM) model is less appropriate for use. One of the appropriate models for data that shows excess kurtosis and tails is the VG model. The VG model has three parameters to control volatility, skewness, and kurtosis. We compare the results of this study with the geometric Brownian motion (GBM) model. The accuracy of the model uses the Mean Absolute Percentage Error (MAPE). In this study, the VG asset model has a MAPE value of 3.08%, while the GBM model has a MAPE value of 13.20%. These results conclude that the VG asset model is more accurate in predicting asset prices compared to the GBM asset model.

Fulltext View|Download
Keywords: Asset; Variance Gamma; geometric Brownian motion.

Article Metrics:

  1. Avramidis, A. N. and L’Ecuyer, P. 2006. ‘Efficient Monte Carlo and quasi-Monte Carlo option pricing under the variance gamma model’, Management Science, 52(12), pp. 1930–1944
  2. Bank CIMB Niaga Tbk, P. 2023. Investor Relations. Indonesia. https://investor.cimbniaga.co.id/
  3. Brigo, D. et al. 2011. ‘A Stochastic Processes Toolkit for Risk Management’, SSRN Electronic Journal
  4. Campbell, J. Y., Lo, A. W. and MacKinla, A. C. 1997. The Econometric of Financial Markets. Princeton University Pres
  5. Clyde, M. A., Ghosh, J. and Littman, M. L. 2011. ‘Bayesian adaptive sampling for variable selection and model averaging’, Journal of Computational and Graphical Statistics, 20(1), pp. 80–101
  6. Fragiadakis, K., Karlis, D. and Meintanis, S. G. 2013. ‘Inference procedures for the variance gamma model and applications’, Journal of Statistical Computation and Simulation, 83(3), pp. 555–567
  7. Fu, M. C. 2007. ‘Variance-gamma and Monte Carlo’, in Applied and Numerical Harmonic Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser Boston Press
  8. Hoyyi, A., Abdurakhman, A. and Rosadi, D. 2022. ‘Variance Gamma Process With Monte Carlo Simulation and Closed Form Approach for European Call Option Price Determination’, Media Statistika, 14(2), pp. 183–193
  9. Hoyyi, A., Abdurakhman and Rosadi, D. 2024. ‘Variance Gamma Model in Determining the Default Probability of Coupon Bond Issuing Company’, IAENG International Journal of Applied Mathematics, 54(5), pp. 961–968
  10. Ivanov, R. V. 2018. ‘On risk measuring in the variance-gamma model’, Statistics and Risk Modeling, 35(1–2), pp. 23–33
  11. Ivanov, R. V. and Ano, K. 2016. ‘On exact pricing of FX options in multivariate time-changed Lévy models’, Review of Derivatives Research, pp. 1–16
  12. Madan, D. B., Carr, P. P. and Chang, E. C. 1998. ‘The Variance Gamma Process and Option Pricing’, Review of Finance, 2, pp. 79–105
  13. Maechler, M. 2012. ‘Bessel: Bessel -- Bessel Functions Computations and Approximations.’, r package. http://cran.r-project.org/package=Bessel
  14. Scott, A. D., Dong, C. Y. and Scott, M. D. 2018. ‘Package “ VarianceGamma ”. The Variance Gamma Distribution’, r package. https://cran.r- project.org/package =VarianceGamma
  15. Team, R. C. 2020. ‘R: A language and environment for statistical computing. R Foundation for Statistical Computing.’, r package. https://www.r-project.org/

Last update:

No citation recorded.

Last update:

No citation recorded.