skip to main content

PEMODELAN SPATIAL AUTOREGRESSIVE MODEL (SAR) PADA KASUS KEMISKINAN DI JAWA TIMUR

Nurul Ulya Ayudia  -  Department of Mathematic, Universitas Mataram, Jl. Majapahit No. 62, Gomong, Kec. Selaparang, Kota Mataram, Nusa Tenggara Barat, Indonesia
*Dina Eka Putri  -  Department of Statistic, Universitas Mataram, Jl. Majapahit No. 62, Gomong, Kec. Selaparang, Kota Mataram, Nusa Tenggara Barat, Indonesia
Open Access Copyright 2024 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Poverty is a trigger for one of the serious issues in the development process in Indonesia. Various measures have been undertaken by countries around the world to eradicate poverty, and this eradication agenda is listed in the first goal of the Sustainable Development Goals (SDGs), which is "No Poverty," with the target that all countries in the world will strive to eliminate all forms of poverty by 2030. This study aims to conduct an analysis model regarding the Spatial Autoregressive Model (SAR) to demonstrate the spatial effects of the relationship between independent variables and the dependent variable, with a case study of Poverty in Regencies/Cities in East Java in 2023. Factors that have a significant influence on poverty include the Gini Ratio (X1), average years of schooling (X2), per capita expenditure (X3), and the percentage of households receiving PKH (X7). The model shows that the variability in poverty can be explained by this model by 80.10%, indicating that the model has a good fit, while 19.9% is explained by other variables outside the model.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
Untitled
Subject
Type Research Instrument
  Download (341KB)    Indexing metadata
Keywords: Spatial regression; spatial autogressive model (SAR); poverty

Article Metrics:

  1. Anselin, L. 1988. Spatial econometrics: methods and models. Springer Science & Business Media
  2. Astutik, D., & Santoso, D.B. 2021. ANALISIS FAKTOR YANG MEMPENGARUHI KEMISKINAN DI JAWA TIMUR Pendekatan Spasial. Jurnal Ilmiah Mahasiswa Fakultas Ekonomi dan Bisnis, 9(1)
  3. Badan Pusat Statistik Jawa Timur. 2023. Sosial dan Kependudukan. Diakses dari https://jatim.bps.go.id/ (diakses pada 30 Maret 2024)
  4. Baltagi, B.H. 2008. Econometrics: 4th edition. Springer-Verlag Berlin Heidelberg
  5. Caroline, E. 2020. Aplikasi Ekonometrika Spasial dengan Software Stata. SCORPIO MEDIA PUSTAKA
  6. Desgagne, A., & Micheaux, P.L. 2017. A powerful and interpretable alternative to the Jarque–Bera test of normality based on 2nd-power skewness and kurtosis, using the Rao's score test on the APD family. Journal of Applied Statistics
  7. Dube, J., & Legros, D. 2014. Spatial Econometrics Using Microdata. ISTE Ltd and John Wiley & Sons, Inc
  8. Fischer, M.M., & Wang, J. 2011. Spatial Data Analysis Model, Method and Techniques. Springer Heidelberg Dordrecht London New York
  9. Fotheringham, A.S., & Rogerson P.A. 2009. The SAGE Handbook of Spatial Analysis. SAGE Publication
  10. Hasanah, R., Syaparuddin, & Rosmeli. 2021. Pengaruh angka harapan hidup, rata-rata lama sekolah dan pengeluaran perkapita terhadap tingkat kemiskinan pada Kabupaten /Kota di Provinsi Jambi. e-Jurnal Perspektif Ekonomi dan Pembangunan Daerah, 10(3), p. 223-232
  11. Kevin, A.V., Bhinadi, A., & Syari’udin, A. 2022. Pengaruh PDRB, Angka Harapan Hidup,dan Rata-rata Lama Sekolah Terhadap Kemiskinan di Kabupaten/Kota Provinsi Jawa Tengah Tahun 2013-2021. Sibatik Journal (Jurnal Ilmiah Bidang Sosial, Ekonomi, Budaya, Teknologi, dan Pendidikan, 1(12), p. 2959-2968
  12. Khadka, N. (2023, Oktober 19). Jarque-Bera Test: Guide Testing Normality With Statistical Accuracy. Dataaspirant. https://dataaspirant.com/jarque-bera-test/
  13. Mihai, M., Titan, E., & Manea, D. 2015. Education and Poverty. Procedia Economics and Finance, 32, p. 855-860
  14. Minsarnawati, & Mazziya A.A. 2023. Pola Penyakit Tuberklosis (TBC) di Provinsi Jawa Timur: Analisis Spasial dan Determinannya. Jawa Tengah: Penerbit NEM
  15. Nur, M.S., et al. 2024. Pemodelan Spatial Autoregressive (SAR) untuk Persentase Kemiskinan di Jawa Barat Tahun 2021. Jurnal Matematika dan Statistika serta Aplikasinya, 12(1), p. 9-14
  16. Prasetya, I.P.G.I.B., Baharuddin, Wibawa, G.N.A. 2024. Pemodelan Regresi Spasial untuk Menentukan Faktor-Faktor yang Berpengaruh terhadap Tingkat Kriminalitas di Provinsi Bali dan Jawa Timur. Jurnal Syntax Admiration, 5(6), p. 2035-2046
  17. Puspita, N.M., & Wutsqa, U.D. 2023. Pemodelan Faktor-Faktor yang Mempengaruhi Kemiskinan di Provinsi Nusa Tenggara Barat dengan Menggunakan Regresi Spasial. Jurnal Statistika dan Sains Data, 1(1), p. 56-66
  18. Rahman, P.A., Firman, & Rusdinal. 2019. Kemiskinan dalam Perspektif Ilmu Sosiologi. Jurnal Pendidikan Tambusai, 3(6), p. 1542-1548
  19. Rahmawati, R., Safitri, D., & Fairuzdhiya, O.U. 2015. Analisis Spasial Pengaruh Tingkat Pengangguran Terhadap Kemiskinan di Indonesia (Studi Kasus Provinsi Jawa Tengah). Media Statistika, 8(1), p. 23-30
  20. Santoso, N.K, et al. 2022. Analisis Spasial Kemiskinan pada Masa Pemulihan Pandemi Covid-19 di Jawa Barat Tahun 2021. Jurnal Statistika dan Aplikasinya, 6(2), p. 288-299
  21. Sihombing, A.O. 2022. Analisis Spasial Kemiskinan di Sumatera Utara. Journal of Analytical Research, Statistics and Computation, 1(1), p. 64-77
  22. Strelec, L. 2008. Comparison of Power of Modified Jarque-Bera Normality Tests and Selected Tests of Normality. Acta univ. agric. et silvic. Mendel. Brun, LVI(6), p. 137–148
  23. Wijaya, E., et al. 2024. Buku Ajar Ekonometrika. PT. Sonpedia Publishing Indonesia

Last update:

No citation recorded.

Last update:

No citation recorded.