skip to main content

PERBANDINGAN PERAMALAN HARGA SAHAM PT BANK CENTRAL ASIA TBK MENGGUNAKAN MODEL ARIMA DAN HIBRIDA TSR-ARIMA

Rizki Rahmawati  -  Department of Statistics, Sebelas Maret University, Jl. Ir. Sutami No.36, Kentingan, Jebres, Surakarta, Indonesia 57126, Indonesia
*Etik Zukhronah  -  Prodi Statistika, Universitas Sebelas Maret, Indonesia
Winita Sulandari  -  Prodi Statistika, Universitas Sebelas Maret, Indonesia
Open Access Copyright 2024 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Stocks of PT Bank Central Asia Tbk. is one of the most desirable stocks for investors due to its high liquidity index. Different stock prices every day encourage investors to predict profits and losses that may occur. Forecasting becomes the solution to predict stock prices for the next few periods. Autoregressive Integrated Moving Average (ARIMA) and Time Series Regression (TSR) are models that can be used in forecasting time series data. This study aims to compare the accuracy of forecasting the stock price of PT Bank Central Asia Tbk. using the ARIMA and hybrid TSR-ARIMA models based on the MAPE value. The data used is daily stock price data on weekdays of PT Bank Central Asia Tbk. obtained from the Yahoo Finance with the period June 24, 2022 to June 13, 2023. The result shows that the best ARIMA model is ARIMA (1,1,0) with MAPE values of training and testing data are 0,9624% and 0,4632% respectively, while the best TSR-ARIMA model is TSR-ARIMA (1,1,0) with MAPE values of training and testing data are 0,9628% and 0,4467% respectively. Thus, TSR-ARIMA is the best model because it has a smaller MAPE value of testing data. 
Fulltext View|Download
Keywords: stock price; ARIMA; TSR-ARIMA; MAPE

Article Metrics:

  1. Arumsari, M. dan Dani, A. T. R. 2021. Peramalan data runtun waktu menggunakan model hybrid Time Series Regression-Autoregressive Integrated Moving Average Jurnal Siger Matematika. 2(1), 1-12. https://doi.org/10.23960/jsm.v2i1.2736
  2. Ayuni, G. N. dan Fitrianah, D. 2019. Penerapan Metode Regresi Linear Untuk Prediksi Penjualan Properti pada PT XYZ. Jurnal Telematika, Vol 14(2), 79-85
  3. Bowerman, B. L. and O’Connell, D. 1993. Forecasting and Time Series: An Applied Approach, 3rd edition. California. Duxbury Press
  4. Buchori, M. dan Sukmono, T. 2018 Peramalan produksi menggunakan metode Autoregressive Integrated Moving Average (ARIMA) di PT XYZ Prozima. Vol 2(1), 27-33. https://doi.org/10.21070/prozima.v2i1.1290
  5. Darmadji, T. dan Fakhrudin, H. M. 2012. Pasar Modal di Indonesia: pendekatan tanya jawab (Edisi Ketiga). Jakarta. Salemba Empat
  6. Gujarati, D.N. (2004). Basic Econometrics (4 ed). New Delhi. Tata McGraw-Hill Education
  7. Hanke, J. E. and Wichern, D. 2014. Business Forecasting Ninth Edition. New Jersey. Pearson Prentice Hall
  8. Kurniasi, A. A. dan Saptari, M. A. 2021. Aplikasi peramalan harga saham perusahaan Lq45 dengan menggunakan metode Arima Sisfo: Jurnal Ilmiah Sistem Informasi. Vol 5(1), 13-26. https://doi.org/10.29103/sisfo.v5i1.4849
  9. Makridakis, S., Wheelwright, S. C., and Hyndman, R. J. 1998. Forecasting Methods and Application (3rd edition). John Willey & Sons, Inc., New York
  10. PT Bursa Efek Indonesia. 2023. Fact Sheet Perusahaan LQ45. https://www.idx.co.id/id/data-pasar/laporan-statistik/fact-sheet-perusahaan-lq45. Diakses 14 September 2023
  11. Ramadani, K., Wahyuningsih, S., dan Hayati, M. N. (2022). Forecasting Stock Price PT. Telkom Using Hybrid Time Series Regression Linier-Autoregressive Integrated Moving Average Model. Jurnal Matematika, Statistika dan Komputasi. Vol 18(2), 293-307. https://doi.org/10.20956/j.v18i2.18837
  12. Rusdin, R. 2008. Pasar Modal, Teori, Masalah dan Kebijakan dalam Praktik. Bandung. Alfa Beta
  13. Suhartono, S., Isnawati, S., Salehah, N., Prastyo, D., Kuswanto, H., dan Lee, M. 2018. Hybrid SSA-TSR-ARIMA for Water Demand Forecasting. International Journal of Advances in Intelligent Informatics. Vol 4(3), 238-250. https://doi.org/10.26555/ijain.v4i3.275
  14. Wei, W. W. S. 2006. Time Series Analysis: Univariate and Multivariate Methods (2nd ed.). Pearson Education
  15. Wirdyacahya, B. S. dan Prastuti, M. 2022. Peramalan Permintaan Semen di PT. XYZ Menggunakan Time Series Regression dan ARIMA. Jurnal Sains dan Seni ITS. Vol 11(1), D96-D101. https://doi.org/10.12962/j23373520.v11i1.63222
  16. Zhang, G. P. (2003). Time Series Forecasting Using Hybrid ARIMA and Neural Network Model. Neurocomputing. 50, 159-175

Last update:

No citation recorded.

Last update:

No citation recorded.