slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor
PEMODELAN KLASIFIKASI PREFERENSI IDEOLOGI PARTAI POLITIK PADA PEMILIH PEMULA DI PROVINSI BANTEN | Wicaksono | Jurnal Gaussian skip to main content

PEMODELAN KLASIFIKASI PREFERENSI IDEOLOGI PARTAI POLITIK PADA PEMILIH PEMULA DI PROVINSI BANTEN

*Agung Satrio Wicaksono orcid  -  Department of Public Administration, Universitas Sultan Ageng Tirtayasa, Jl. Raya Palka KM 3, Pabuaran, Serang, Indonesia 42163, Indonesia
Moh Rizky Godjali  -  Department of Government Science, Universitas Sultan Ageng Tirtayasa, Jl Raya Palka Km.3, Sindangsari, Pabuaran, Serang City, Banten 42163, Indonesia
Ika Arinia Indriyany  -  Department of Government Science, Universitas Sultan Ageng Tirtayasa, Jl Raya Palka Km.3, Sindangsari, Pabuaran, Serang City, Banten 42163, Indonesia
Weksi Budiaji  -  Department of Statistics, Universitas Sultan Ageng Tirtayasa, Jl. Jenderal Sudirman Km 3, Kotabumi, Kec. Purwakarta, Kota Cilegon, Banten 42435, Indonesia
Aulia Ikhsan  -  Department of Statistics, Universitas Sultan Ageng Tirtayasa, Jl. Jenderal Sudirman Km 3, Kotabumi, Kec. Purwakarta, Kota Cilegon, Banten 42435, Indonesia
Open Access Copyright 2024 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
First-time voters in the 2024 election are expected to play an important role in determining the future direction of Indonesia, by bringing fresh perspectives and new aspirations for change amidst increasingly complex political dynamics. This study aims to apply classification modeling using political party preference data on first-time voters in Banten Province. Data were collected through a survey with responses from 3 different party ideologies, namely the Secular National Party (PNS), the Religious National Party (PNR), and the Islamic Party (PI). The analysis stages include data preprocessing, forming a Random Forest classification model, evaluating model performance using accuracy, precision, recall, and F1 score measures, and mapping the importance of features from the Random Forest results. The SMOTE technique is used to handle class imbalance, where the majority of party ideologies from the data obtained are PNS, which is 50%. The results obtained from 10-fold cross-validation with multiclass classification show an accuracy of 64.00%, with precision, recall, and F1 score values of 61.88%, 62.33%, and 60.41%. The variable importance of political party ideology is the ideological background of the voters themselves, with a Mean Decrease Gini (MDG) score is 91.28.
Fulltext View|Download
Keywords: first-time voters; political party ideology; election; classification modeling; random forest.
Funding: LPPM Untirta

Article Metrics:

  1. Anguita, D. et al. (2012) ‘The “K” in K-fold Cross Validation’, Computational Intelligence [Preprint]
  2. Azirah (2019) ‘PARTISIPASI POLITIK PEMILIH PEMULA DALAM PESTA DEMOKRASI’, Politica: Jurnal Hukum Tata Negara dan Politik Islam, 6(2), pp. 86–100. Available at: https://doi.org/10.32505/politica.v6i2.2735
  3. Christy, E. and Suryowati, K. (2021) ‘ANALISIS KLASIFIKASI STATUS BEKERJA PENDUDUK DAERAH ISTIMEWA YOGYAKARTA MENGGUNAKAN METODE RANDOM FOREST’, Jurnal Statistika Industri dan Komputasi, 6(1), pp. 69–76
  4. Fatmawati, F. and Narti, N. (2022) ‘Perbandingan algoritma C4. 5 dan Naive Bayes dalam klasifikasi tingkat kepuasan mahasiswa terhadap pembelajaran daring’, JTIM: Jurnal Teknologi Informasi dan Multimedia, 4(1), pp. 1–12
  5. Fernandez, A. et al. (2018) ‘SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary’, Journal of Artificial Intelligence Research, 61, pp. 863–905. Available at: https://doi.org/10.1613/jair.1.11192
  6. Hadiana, R., Soleh, A.M. and Sartono, B. (2020) ‘Two-Stage Statistical Downscaling Modeling with Multi-Class Random Forest on Rainfall Prediction’, in Proceedings of the Proceedings of the 1st International Conference on Statistics and Analytics, ICSA 2019, 2-3 August 2019, Bogor, Indonesia. Proceedings of the 1st International Conference on Statistics and Analytics, ICSA 2019, 2-3 August 2019, Bogor, Indonesia, Bogor, Indonesia: EAI. Available at: https://doi.org/10.4108/eai.2-8-2019.2290525
  7. Hastie, T., Tibshirani, R. and Friedman, J. (2017) ‘The elements of statistical learning: data mining, inference, and prediction’. Springer
  8. Iman, A.H. et al. (2022) ‘Perbandingan Algoritma Klasifikasi Random Forest dan Extreme Gradient Boosting pada Dataset Cuaca Provinsi DKI Jakarta Tahun 2018’, in Prosiding Seminar Nasional Mahasiswa Bidang Ilmu Komputer dan Aplikasinya, pp. 793–803
  9. Junus, C.Z.V., Tarno, T. and Kartikasari, P. (2023) ‘Klasifikasi Menggunakan Metode Support Vector Machine Dan Random Forest Untuk Deteksi Awal Risiko Diabetes Melitus’, Jurnal Gaussian, 11(3), pp. 386–396
  10. Mahmuda, S. (2024) ‘Implementasi Metode Random Forest pada Kategori Konten Kanal Youtube’, JURNAL JENDELA MATEMATIKA, 2(01), pp. 21–31. Available at: https://doi.org/10.57008/jjm.v2i01.633
  11. Ramadhan, A., Susetyo, B., and others (2019) ‘Penerapan Metode Klasifikasi Random Forest Dalam Mengidentifikasi Faktor Penting Penilaian Mutu Pendidikan’, Jurnal Pendidikan dan Kebudayaan, 4(2), pp. 169–182
  12. Ramayanti, F. et al. (2023) ‘Application of Random Forest to Identify for Poor Households in West Sumatera Province’, UNP Journal of Statistics and Data Science, 1(2), pp. 97–104. Available at: https://doi.org/10.24036/ujsds/vol1-iss2/31
  13. Rizal, N., Fatekurohman, M. and Anggraeni, D. (2024) ‘KLASIFIKASI PENENTUAN LOKASI STRATEGIS OUTLET BANK SYARIAH INDONESIA DENGAN METODE NAÏVE BAYES CLASSIFIER’, Jurnal Gaussian, 12(4), pp. 477–486. Available at: https://doi.org/10.14710/j.gauss.12.4.477-486
  14. Santi, V.M. (2018) ‘Pengembangan Model Regresi Logistik Multinomial untuk Klasifikasi Politik pada Pemilihan Umum’, Jurnal Statistika dan Aplikasinya, 2(1), pp. 37–43. Available at: https://doi.org/10.21009/JSA.02105
  15. Sihombing, P.R. and Yuliati, I.F. (2021) ‘Penerapan Metode Machine Learning dalam Klasifikasi Risiko Kejadian Berat Badan Lahir Rendah di Indonesia’, MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, 20(2), pp. 417–426. Available at: https://doi.org/10.30812/matrik.v20i2.1174
  16. Sitanggang, P.B. et al. (2024) ‘The Relationship between Political Image and Voting Behavior in First-time Voters: Demographics of Generation Z Voters in the 2024 Election in Indonesia’, INTERNATIONAL JOURNAL OF SOCIAL SCIENCE AND EDUCATION RESEARCH STUDIES, 04(06). Available at: https://doi.org/10.55677/ijssers/V04I6Y2024-01

Last update:

No citation recorded.

Last update:

No citation recorded.