skip to main content

KLASIFIKASI PENERIMA BANTUAN IURAN JAMINAN KESEHATAN DI NTB MENGGUNAKAN REGRESI LOGISTIK BINER DAN NAÏVE BAYES

Jihan Melani  -  Department of Mathematics, Universitas Mataram, Jl. Majapahit No.62, Gomong, Kec. Selaparang, Kota Mataram, Nusa Tenggara Barat, Indonesia. 83115, Indonesia
*Lisa Harsyiah  -  universitas mataram, Indonesia
Zulhan Widya Baskara  -  Department of Statistics, Universitas Mataram, Jl. Majapahit No.62, Gomong, Kec. Selaparang, Kota Mataram, Nusa Tenggara Barat, Indonesia. 83115, Indonesia
Open Access Copyright 2024 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Health and poverty are two things that always go hand in hand and are included in Sustainable Development Goals or what are known as SDGs. As the SDGs progress, several countries have attempted to provide social assistance programs aimed at overcoming poverty and providing access to health services for their communities, as is done in Indonesia. BPJS Recipient Contribution Assistance (PBI) health insurance is one of the assistance provided in the form of health insurance contribution assistance to the poor or underprivileged people. This study aims to classify the status of recipients of health insurance contribution assistance in NTB using binary logistic regression and naïve Bayes methods. The independent variables used are house floor area, house floor type, house wall type, defecation facilities, main light source, main water source, type of material burning for cooking, and final education. The results obtained show that Naïve Bayes is better at classifying the status of recipients of health insurance contribution assistance in NTB compared to binary logistic regression, with the classification rates of binary logistic regression and naïve bayes are 62.26% and 63.9%.
Fulltext View|Download
Keywords: BPJS-PBI; Naïve Bayes; Binary Logistic Regression.

Article Metrics:

  1. Ajani, N. (2021). Perbandingan Klasifikasi Sikap Masyarakat dalam Penanganan Covid-19 di Kota Mataram Menggunakan Analisis Diskriminan dan Regresi Logistik, Skripsi. Universitas Mataram
  2. Annur, H. (2018). Klasifikasi Masyarakat Miskin Menggunakan Metode Naive Bayes. Jurnal Ilmiah, 10(2), 160–165
  3. Astuti, E. K. (2020). Peran BPJS Kesehatan dalam Mewujudkan Hak Atas Pelayanan Kesehatan Bagi Warga Negara Indonesia. Jurnal Penelitian Hukum Indonesia, 1(1), 55–65
  4. Dinas Kesehatan Provinsi NTB. (2023, November 19). Cakupan Jaminan Kesehatan Nasional Provinsi NTB. Https://Data.Ntbprov.Go.Id/Group/Dinas-Kesehatan.
  5. Freund, M. R., & Walpole, R. E. (2014). Mathematical Statistics with Applications (8th ed.). Pearson Education Limited
  6. Hosmer, D. W., & Lemeshow, S. (2000). Applied Logistic Regression (Second). John Wiley and Sons, Inc
  7. Iqbal, M., Wiranata, A. D., Suwito, R., & Ananda, R. F. (2023). Perbandingan Algoritma Naive Bayes, KNN, dan Decision Tree terhadap Ulasan Apllikasi Threads dan Twitter. Kajian Ilmiah Informatika Dan Komputer, 4(3), 1799–1807
  8. Iskandar, A. H. (2020). SDGs DESA Percepatan Pencapaian Tujuan Pembangunan Nasional Berkelanjutan. Yayasan Pustaka Obor Indonesia
  9. Johnson, R. A., & Wichern, D. W. (2007). Applied Multivariate Statistical Analysis. Prentice Hall, Inc
  10. Julietti, S. A., Nyorong, M., & Syamsul, D. (2024). Evaluasi Program JKN tentang Kepesertaan Penerima Bantuan Iuran (PBI) di Kota Padangsidimpuan. JUrnal Kesehatan Dan Fisioterapi, 4(1), 46–53
  11. Nirwana, S. R. A. (2015). Regresi Logistik Multinomial dan Penerapannya dalam Menentukan Faktor yang Berpengaruh pada Pemilihan Program Studi di Jurusan Matematika UNM. Universitas Negeri Makassar
  12. Nitami, A. (2021). Penerapan Analisis Regresi Logistik Biner dengan Metode Penduga Maximum Likelihood (Studi Kasus: Tingkat Partisipasi Angkatan Kerja Perempuan di Indonesia). Universitas Lampung
  13. Pratama, N. B., Purnomo, E. P., & Agustiyara. (2020). Sustainable Development Goals (SDGs) dan Pengentasan Kemiskinan di Daerah Istimewa Yogyakarta. Sosiohumaniora, 6(2), 64–74
  14. Rizki, F., Widodo, D. A. A., & Wulandari, S. P. (2015). Faktor Risiko Anemia Gizi Besi pada Ibu Hamil di Jawa Timur Menggunakan Analisis Regresi Logistik. Institut Teknologi Sepuluh November
  15. Trimuto, Syamsu, N., & Octaviany, M. (2021). Sustainable DEvelopment Goals (SDGs) Melalui Pembiayaan Produktif UMKM di Bank Syariah. Islamic Review, 10(1), 19–38. 10.35878/islamicreview.v10.i1.269
  16. Yuditia, A., Hidayat, Y., & Achmad, S. (2021). Pelaksanaan Jaminan Kesehatan Nasional oleh BPJS Berdasarkan Undang-Undang No. 40 Tahun 2004 tentang Sistem Jaminan Sosial Nasional. 6(1), 43–61

Last update:

No citation recorded.

Last update:

No citation recorded.