skip to main content

ANALISIS KLASTER KECAMATAN DI KOTA SURABAYA BERDASARKAN DATA PENDIDIKAN TAHUN 2022-2023

*Nanda Reza Handitia  -  Prodi S1 Matematika, Universitas Negeri Surabaya, Jl. Ketintang Wiyata No.36, Ketintang, Kec. Gayungan, Surabaya, Jawa Timur, Indonesia 60231, Indonesia
A'yunin Sofro scopus  -  Prodi S1 Sains Aktuaria, Universitas Negeri Surabaya, Jl. Ketintang Wiyata No.36, Ketintang, Kec. Gayungan, Surabaya, Jawa Timur, Indonesia 60231, Indonesia
Open Access Copyright 2024 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Education is an essential requirement for every individual to develop a country's human resources. The national education law emphasizes the importance of equal access, improving quality, and efficient education management to face global challenges. However, the equitable distribution of education in Indonesia, particularly through the zoning system, still faces significant challenges in major cities like Surabaya due to unequal distribution of educational access and facilities. This study compares the effectiveness of three non-hierarchical clustering analysis methods on Surabaya City's education data for 2022-2023. The data used was obtained from the latest publication of BPS Surabaya titled "Surabaya Municipality in Figures 2024". The data includes education data from 31 sub-districts in Surabaya, including the number of schools, students, and teachers at each level of education, namely elementary school, junior high school, and senior high school. The results of this research indicate that the K-Means method has the highest average coefficient value, with an average Silhouette Coefficient of 0.592. Therefore, the K-Means method has the most optimal cluster accuracy compared to other methods. These findings emphasize the need for more attention to sub-districts with low educational conditions to ensure equal access to education throughout the city of Surabaya.

Fulltext View|Download
Keywords: Education; K-Means; K-Medoids; Fuzzy C-Means

Article Metrics:

  1. Bholowalia, P., & Kumar, A. (2014). EBK-Means: A Clustering Technique based on Elbow Method and K-Means in WSN. International Journal of Computer Applications, 105(9), 975–8887
  2. Dewi, D. A. I. C., & Pramita, D. A. K. (2019). Analisis Perbandingan Metode Elbow dan Silhouette pada Algoritma Clustering K-Medoids dalam Pengelompokan Produksi Kerajinan Bali. Matrix : Jurnal Manajemen Teknologi Dan Informatika, 9(3), 102–109. https://doi.org/10.31940/matrix.v9i3.1662
  3. Haekal, M. (2022). Tantangan Distribusi Guru di Daerah Terpencil Indonesia: Antara Manajemen, Isu Personal, dan Faktor Geografi. TA’DIB : Jurnal Pemikiran Pendidikan, 12(1), 18–23. https://doi.org/10.54604/tdb.v12i1.100
  4. Hakim, L. (2016). Pemerataan Akses Pendidikan bagi Rakyat Sesuai dengan Amanat Undang-Undang Nomor 20 Tahun 2003 tentang Sistem Pendidikan Nasional. EduTech: Jurnal Ilmu Pendidikan Dan Ilmu Sosial, 2(1), 53–64
  5. Idris, F., Azmi, F., & Kusuma, D. P. (2019). Pengelompokan Data Guru Di Indonesia Menggunakan K-Means Clustering. E-Proceeding of Engineering, 6(2), 5643–5658
  6. Kurniawan, R., Mukarrobin, M., & Mahradianur. (2021). Klasterisasi Tingkat Pendidikan di DKI Jakarta pada Tingkat Kecamatan Menggunakan Algoritma K-Means. Technologia: Jurnal Ilmiah, 12(4), 234. https://doi.org/10.31602/tji.v12i4.5633
  7. Madhulata, T. S. (2012). An Overview of Clustering Methods. IOSR Journal of Engineering, 2(4), 719–725. https://doi.org/10.3233/ida-2007-11602
  8. Mario, A., Herry, S., & Nasution, H. (2016). Pemilihan Distance Measure Pada K-Means Clustering Untuk Pengelompokkan Member Di Alvaro Fitness. Jurnal Sistem Dan Teknologi Informasi, 1(1), 1–6
  9. Maryani, I., Riana, D., Astuti, R. D., Ishaq, A., Sutrisno, & Pratama, E. A. (2018). Customer segmentation based on RFM model and clustering techniques with K-means algorithm. Proceedings of the 3rd International Conference on Informatics and Computing, ICIC 2018, 1–6. https://doi.org/10.1109/IAC.2018.8780570
  10. Meiriza, A., Ali, E., Rahmiati, & Agustin. (2023). Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokan Program BPJS Ketenagakerjaan. Indonesian Journal of Computer Science, 12(2), 714–728. https://doi.org/10.33022/ijcs.v12i2.3184
  11. Merliana, N. P. E., Ernawati, & Santoso, A. J. (2019). ANALISA PENENTUAN JUMLAH CLUSTER TERBAIK PADA METODE K-MEANS CLUSTERING. Matrix : Jurnal Manajemen Teknologi Dan Informatika, 102–109. https://www.unisbank.ac.id/ojs/index.php/sendi_u/article/view/3333
  12. Nurfatimah, S. A., Hasna, S., & Rostika, D. (2022). Membangun Kualitas Pendidikan di Indonesia dalam Mewujudkan Program Sustainable Development Goals (SDGs). Jurnal Basicedu, 6(4), 6145–6154. https://doi.org/10.31004/basicedu.v6i4.3183
  13. Priambodo, Y. A., & Prasetyo, S. Y. J. (2018). Pemetaan Penyebaran Guru di Provinsi Banten dengan Menggunakan Metode Spatial Clustering K-Means (Studi kasus : Wilayah Provinsi Banten). Indonesian Journal of Computing and Modeling, 1(1), 18–27. https://doi.org/10.24246/j.icm.2018.v1.i1.p18-27
  14. Putri, M. M., & Fithriasari, K. (2015). Pengelompokan Kabupaten/Kota di Jawa Timur Berdasarkan Indikator Kesehatan Masyarakat Menggunakan Metode Kohonen SOM dan K-Means. Jurnal Sains Dan Seni ITS, 4(1), 13–18. 10.12962/j23373520.v4i1.8815
  15. Rachmatin, D. (2014). Aplikasi Metode-Metode Agglomerative dalam Analisis Klaster pada Data Tingkat Polusi Udara. Infinity Journal, 3(2), 133. https://doi.org/10.22460/infinity.v3i2.59
  16. Reay, D. (2020). Miseducation: Inequality, Education, and the Working Classes. Journal of Teaching and Learning, 14(2), 64–66. https://doi.org/10.26522/ssj.v13i2.2227
  17. Sari, P. I. (2019). Peran Pendidik dalam Implementasi Media Pembelajaran terhadap Peserta Didik Generasi 4.0. Prosiding Seminar Nasional Pendidikan FKIP, 2(1), 508–517
  18. Tasmalaila Hanifa, T., Al-Faraby, S., & Adiwijaya. (2017). Analisis Churn Prediction pada Data Pelanggan PT. Telekomunikasi dengan Logistic Regression dan Underbagging. E-Proceeding of Engineering, 4(2), 3210–3225
  19. Tchamyou, V. S. (2020). Education, lifelong learning, inequality and financial access: evidence from African countries. Contemporary Social Science, 15(1), 7–25. https://doi.org/10.1080/21582041.2018.1433314
  20. Widarjono, A. 2010. Analisis Statistika Multivariat Terapan. Edisi pertama. Yogyakarta: UPP STIM YKPN

Last update:

No citation recorded.

Last update:

No citation recorded.