skip to main content

PENERAPAN METODE UNIVERSAL KRIGING UNTUK MENGESTIMASI LAJU PENURUNAN MUKA TANAH DKI JAKARTA

Nabilah Sofieyanti  -  Prodi Statistika, FMIPA, Universitas Islam Bandung, Indonesia
*Dwi Agustin Nuriani Sirodj  -  Prodi Statistika, FMIPA, Universitas Islam Bandung, Indonesia
Open Access Copyright 2024 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

DKI Jakarta is one of the provinces experiencing land subsidence problems. Monitoring the rate of land subsidence is very important to mitigate and control environmental impacts. One of the main problems in tracking the rate of land subsidence is the limitation of monitoring tools. Therefore, the Universal Kriging spatial interpolation method can be used to estimate the rate of land subsidence at unsampled locations. This research uses secondary data on the rate of land subsidence in DKI Jakarta Province in 2022. This research aims to produce an estimated value of the land subsidence rate at an unsampled location so that vulnerable areas with unknown land subsidence rates can also be monitored more effectively. Based on the results, the Spherical theoretical semivariogram is the best model because it has the smallest RMSE value compared to other models. The estimation results show that the average subsidence rate is 0.03512 cm/year. The largest subsidence rate is 0.05355 cm/year in Duri Kosambi, and the smallest subsidence rate is 0.03054 cm/year in Tangki. The Universal Kriging method effectively estimates the subsidence rate in unsampled locations. This method can be used as a first step in mitigating, controlling, and preventing the impacts of land subsidence.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
PERJANJIAN PENGALIHAN HAK CIPTA
Subject
Type Research Instrument
  Download (243KB)    Indexing metadata
Keywords: Interpolation; universal kriging; land subsidence rate

Article Metrics:

  1. Artanto, A., & Purwanto, T. H. (2015). Comparison of Interpolation Methods Based on Variation of Relief in Processing Digital Elevation Model Part of East Java. Jurnal Bumi Indonesia, 4(3)
  2. Charles Holbert. (2023). Exploratory Spatial Data Analysis and Kriging in R. https://www.cfholbert.com/blog/esda-kriging/
  3. Cressie, N. (1990). The Origins of Kriging 1. In Mathematical Geology (Vol. 22, Issue 3)
  4. Cressie, N. (1993). Statistics for spatial data. Wiley
  5. Darmo Yuwono, B., & Abidin, H. Z. (2013). Analisis geospasial penyebab penurunan muka tanah di kota Semarang. Prosiding SNST Ke-4. https://www.researchgate.net/publication/303138051
  6. Dika Hadi Anugrah, Dono Guntoro, & Yunus Ashari. (2022). Estimasi Sumberdaya Batugamping di PT X, Kecamatan Palimanan, Kabupaten Cirebon, Provinsi Jawa Barat. Jurnal Riset Teknik Pertambangan, 1(2), 148–154. https://doi.org/10.29313/jrtp.v1i2.538
  7. Djuraidah, A., Rahardiantoro, S., & Desiwari, A. (2019). Penerapan Metode Cokriging Dengan Variogram Isotropi Dan Anisotropi Dalam Memprediksi Curah Hujan Bulanan Jawa Barat Application Of Cokriging Methods With Isotropy And Anisotropy Variograms In Prediction Of West Java Monthly Rainfall. Jurnal Meteorologi Dan Geofisika, 20, 39–46
  8. Ega Hermawan, O., Montarcih Limantara, L., & Suhartanto, E. (2020). Analisis Sebaran Jaringan Penakar Hujan Dengan Metode Stepwise, Kriging & WMO Di DAS Serang Jawa Tengah. Jurnal Teknik Pengairan, 11(2), 137–146. https://doi.org/10.21776/ub.pengairan.2020.011.02.07
  9. Eka Putri, S., Amor Kusuma, D., Suhandi, B., Nurani Ruchjana, B., Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam, D., Padjadjaran Jalan Raya Bandung Sumedang km, U., Observatorium Nasional Kupang, B., Oelnasi, D., Kupang Tengah, K., Kupang, K., & Tenggara Timur, N. (2020). Penerapan Metode Universal Kriging (UK) Untuk Prediksi Konsentrasi Partikulate Matter 2.5 (PM2.5) Di Kota Bandung. BAREKENG: Jurnal Ilmu Matematika Dan Terapan , 14(2), 279–292. https://doi.org/10.30598/barekengvol14iss2pp279-292
  10. Falah, A. N., Subartini, B., & Ruchjana, B. N. (2017). Application of universal kriging for prediction pollutant using GStat R. Journal of Physics: Conference Series, 893(1). https://doi.org/10.1088/1742-6596/893/1/012022
  11. Fitriyati, N., Irene, Y., & Benita, A. (2023). Application Bootstrap to Estimate the Confidence Intervals of NO2 Levels in the Kriging Method. Jurnal EurekaMatika, 11(2), 122–132. https://ejournal.upi.edu/index.php/JEM
  12. Hutabarat, L. E. (2017). Studi Penurunan Muka Tanah (Land Subsidence) Akibat Pengambilan Air Tanah Berlebih Di DKI Jakarta. In Kumpulan Karya Ilmiah Dosen Universitas Kristen Indonesia Delapan Windu (pp. 360–374). Uki Press
  13. Kasfari, R., Yuwono, D., & Awaluddin, M. (2018). Pengamatan Penurunan Muka Tanah Kota Semarang Tahun 2017. Jurnal Geodesi Undip Januari, 7(1)
  14. Khoirunisa, R., Yuwono, B. D., & Wijaya, A. P. (2015). Analisis Penurunan Muka Tanah Kota Semarang Tahun 2015 Menggunakan Perangkat Lunak Gamit 10.5. Jurnal Geodesi Undip, 4(4), 341–350
  15. Kiš, I. M. (2016). Comparison of ordinary and universal kriging interpolation techniques on a depth variable (a case of linear spatial trend), case study of the Šandrovac Field. Rudarsko Geolosko Naftni Zbornik, 31(2), 41–58. https://doi.org/10.17794/rgn.2016.2.4
  16. Kurnianto, A., Setiahadiwibowo, A. P., & Giamboro, W. S. (2019). Estimasi Sumberdaya Batubara Menggunakan Metode Nearest Neighbour Point, Inverse Distance Weighting, Dan Kriging Pada Daerah Muara Bungo, Sumatera Selatan. JURNAL GEOCELEBES, 3(2), 75–82. https://doi.org/10.20956/geocelebes.v3i2.7580
  17. Laksana, E. A. (2010). Analisis Data Geostatistika Dengan Universal Kriging. Universitas Negeri Yogyakarta
  18. Olea, R. A. (1999). Geostatistics for Engineers and Earth Scientists. In Geostatistics for Engineers and Earth Scientists. Springer US. https://doi.org/10.1007/978-1-4615-5001-3
  19. Respatti, E., Goejantoro, R., Wahyuningsih, S., Program, M., Statistika, S., Program, S. P., & Unmul, F. (2014). Perbandingan Metode Ordinary Kriging dan Inverse Distance Weighted untuk Estimasi Elevasi Pada Data Topografi (Studi Kasus: Topografi Wilayah FMIPA Universitas Mulawarman) Comparison of Ordinary Kriging and Inverse Distance Weighted Methods for Estimation of Elevations Using Topographic Data (Case Study: FMIPA University of Mulawarman’s Topographic). Jurnal EKSPONENSIAL, 5(2)
  20. Robertson, G. P. (2008). GS*: GeoStatistics for the Environmental Sciences. Gamma Design Software
  21. Rosilawati, R. (2010). Perbandingan Analisis Metode Interpolasi Spasial Ordinary Kriging Dan Invers Distance Weighted (IDW) Pada Penentuan Bahan Organik Tanah Di Kabupaten Sampang. Universitas Brawijaya
  22. Rozalia, G., Yasin, H., & Ispriyanti, D. (2016). Penerapan Metode Ordinary Kriging Pada Pendugaan Kadar NO2 Di Udara (Studi Kasus: Pencemaran Udara di Kota Semarang). JURNAL GAUSSIAN, 5(1), 113–121. http://ejournal-s1.undip.ac.id/index.php/gaussian
  23. Ruseffandi, M. A., & Gusman, M. (2020). Pemetaan Kualitas Airtanah Berdasarkan Parameter Total Dissolved Solid (TDS) dan Daya Hantar Listrik (DHL) dengan Metode Ordinary Kriging. Jurnal Bina Tambang, 5(1), 153–162
  24. Sabar, M., Samman, A., Serosero, R. H., & Abdul Kadir, M. (2022). Kerapatan Jenis Mangrove dan Dinamika Nitrat (NO 3 ) pada Sedimen di Pulau Manomadehe, Kecamatan Jailolo Selatan, Kabupaten Halmahera Barat. Jurnal Agribisnis Perikanan, 15(2), 370–380. https://doi.org/10.52046/agrikan.v15i2.370-380
  25. Salsabilla, S., Syaharni, A. F., & Chamidah, N. (2023). Prediction of PM2.5 in DKI Jakarta Using Ordinary Kriging Method. Enthusiastic International Journal of Applied Statistics and Data Science, 3(1), 48–58. https://journal.uii.ac.id/ENTHUSIASTIC
  26. Salwa R, D., Rachmatin, D., & Serviana H, H. (2020). Estimasi Harga Tanah Dengan Menggunakan Metode Universal Kriging (Studi Kasus Pada Kecamatan Taman Sari, Kota Oangkalpinang, Kepulauan Bangkabelitung). EurekaMatika, 8(2), 174–183. https://ejournal.upi.edu/index.php/JEM
  27. Sandai Kiri, D., Sandai, K., Ketapang, K., Kalimantan Barat, P., Inti Jaya Tambang Sandai Kiri Village, S., Sub-District, S., Regency, K., Kalimantan Province, W., Silitonga, D., & Nasrudin Usman, D. (2019). Estimasi Sumberdaya Bauksit Menggunaan Geostatistik dengan Metode Ordinary Kriging di PT Sandai Inti Jaya Tambang ( SIJT ) Desa Sandai Kiri, Kecamatan Sandai, Kabupaten Ketapang, Provinsi Kalimantan Barat. Prosiding Teknik Pertambangan, 5(2), 526–532
  28. Singh, P., & Verma, P. (2019). A comparative study of spatial interpolation technique (IDW and Kriging) for determining groundwater quality. In GIS and Geostatistical Techniques for Groundwater Science (pp. 43–56). Elsevier. https://doi.org/10.1016/B978-0-12-815413-7.00005-5
  29. Syaeful, H., & Suharji. (2019). Geostatistics Application On Uranium Resources Classification: Case Study of Rabau Hulu Sector, Kalan, West Kalimantan. EKSPLORIUM, 39(2), 131–140. https://doi.org/10.17146/eksplorium.2018.39.2.4960
  30. Thamsi, A. B., Jafar, N., & Syariah, A. (2024). Estimation of Laterite Nickel Resources Using Ordinary Kriging Method in The Garuda Block PT Ceria Nugraha Indotama Southeast Sulawesi. International Journal of Engineering and Science Applications, 11(1), 30–35. https://doi.org/10.18280/ijesca.12345
  31. Webster, R. (Richard), & Oliver, M. A. (2007). Geostatistics for environmental scientists. Wiley

Last update:

No citation recorded.

Last update:

No citation recorded.