skip to main content

ANALISIS MODEL REGRESI COX PROPORTIONAL HAZARD PADA DATA KETAHANAN HIDUP PASIEN HEMODIALISA MENGGUNAKAN METODE BRESLOW

Risky Trywita Saragih  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Triastuti Wuryandari  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
*Deby Fakhriyana  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2024 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Chronic Kidney Disease is a pathophysiological stage with various etiologies which causes a progressive and irreversible decline in kidney function that culminates in kidney failure, thus requiring routine kidney therapy. Hemodialysis (HD) is one of the therapies for people with kidney disorders who have poor kidney function. The Cox Proportional Hazard Regression Model is a commonly used model in survival analysis to analyze time to events or between events. In the survival analysis data, there may be ties or joint events, so in this study Cox Proportional Hazard regression was used with the Breslow approach. This study aims to determine the factors that affect the survival time of hemodialysis patients, especially patients at Vita Insani Pematang Siantar Hospital, North Sumatra Province. Based on the results of the analysis obtained that hemodialysis patients who have high systolic blood pressure ≥ 140 chances of failure to survive greater than hemodialysis patients with normal systolic blood pressure. Therefore, hemodialysis patients with high systolic blood pressure need special attention.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
Untitled
Subject
Type Research Instrument
  Download (288KB)    Indexing metadata
Keywords: Chronic Kidney; Hemodialysis; Survival; Cox Proportional Hazard; Breslow Method

Article Metrics:

  1. Collett, D. 2015. Modelling Survival Data in Medical Research, Third Edition. New York: Chapman & Hall/CRC
  2. Gio, P., U., & Effendie, A., R.2017. Belajar bahasa Pemrograman R (Dilengkapi Cara Membuat Aplikasi Olah Data Sederhana dengan R Shiny). Medan: USU Press
  3. Harlan, J. 2017. Analisis Survival. Depok: Gunadarma
  4. Khinanti, A. S., Sudarno, S., & Wuryandari, T. (2021). MODEL REGRESI COX PROPORTIONAL HAZARD PADA DATA KETAHANAN HIDUP PASIEN HEMODIALISA. Jurnal Gaussian, 10(2), 303-314
  5. Klein, J.P. dan M.L. Moeschberger. 2003. Survival Analysis Techniques for Censored and Truncated Data Second Edition. USA: Springer
  6. Kleinbaum, D.G. dan Klein, M. 2012. Survival Analysis: A Self-Learning Text Third Edition. New York: Springer
  7. Lee, E.T., dan J.W. Wang. 2003. Statistical Methods for Survival Data Analysis Third Edition. USA: A John Wiley & Sons, Inc
  8. Riyani, E., Shantika, M., & Imro’ah, N.,2022. Analisis Model Regresi Cox Proportional Hazard Menggunakan Metode Breslow. Buletin Ilmiah Mat.Stat. dan terapannya (Bimaster), Vol. 11, Hal 659-666
  9. Setiani, Eri, Sudarno, Rukun Santoso. 2019. Perbandingan Model Regresi Cox Proportional Hazard Menggunakan Metode Breslow dan Efron (Studi Kasus: Penderiya Stroke di RSUD Tugurejo Kota Semarang). Jurnal Gaussian Vol.8, No. 1:93-105
  10. Suwitra, K.2014. Buku Ajar Penyakit Dalam Jilid I. Edisi VI. Jakarta: Interna Publishing

Last update:

No citation recorded.

Last update:

No citation recorded.