skip to main content

PENERAPAN REGRESI SPLINE TRUNCATED DATA LONGITUDINAL DUA VARIABEL PREDIKTOR UNTUK PEMODELAN HARGA SAHAM PERBANKAN

*Risma Ashali Fauziah  -  Departemen Statistika, Fakultas Sains dan Matematika, Undip, Indonesia
Suparti Suparti  -  , Indonesia
Arief Rachman Hakim  -  , Indonesia
Open Access Copyright 2024 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Stock prices movement are influenced by several factors, including inflation and the exchange rate. The bank is one of the institutions that needs to pay attention to those factors. In this study, analysis of factors that affect stock price can be carried out with the spline truncated approach. The advantage of spline is being able to estimate the data pattern and adjusts to its movement. Stock prices tend to increase and decrease at certain sub-intervals, thus these can be applied in spline truncated. Spline truncated best model for longitudinal data with two predictor variables is determined by choosing the order and optimal knots using the smallest MSE (Mean Square Error). This study used monthly data from January 2019 to December 2022 with a comparison of in sample data and out sample data, which is 90%:10%. The results of the analysis showed the best model obtained on the 2nd orde with 3 knot points. The  value is 97.49%, meaning that the model is strong and the MAPE value is 12.71%, which is means that the model has good forecasting ability because it is in the category of 10% ≤ MAPE <20%.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
CTA Form
Subject
Type Research Instrument
  Download (615KB)    Indexing metadata
Keywords: Stock; Inflation; Exchange Rate; Spline Truncated; Longitudinal Data; MSE, GUI

Article Metrics:

  1. Adnyana, I. M. 2020. Manajemen Investasi dan Protofolio. Jakarta: LPU-UNAS
  2. Alfiyyah, N. S., Suparti, dan Sugito. 2023. Pemodelan Harga Saham Perusahaan Properti dan Real Estate Menggunakan Regresi Longitudinal Spline Truncated Dilengkapi GUI R. Jurnal Gaussian, Vol. 12, No. 1, Hal: 42-51
  3. Chen, R. J. C., Bloomfield, P., dan Fu, J. S. 2003. An evaluation of alternative forecasting methods to recreation visitation. Journal of Leisure Research, Vol. 35, No. 4, Hal: 441–454
  4. Dani, A. T. R., Ni’matuzzahroh, L., Ratnasari, V., dan Budiantara, I. N. 2021. Pemodelan Regresi Nonparametrik Spline Truncated pada Data Longitudinal. Inferensi, Vol. 4, No. 1, Hal: 47
  5. Eubank, R. L. 1988. Spline Smoothing and Nonparametric Regression. New York: Marcell Dekker
  6. Eubank, R. L. 1999. Nonparametric Regression and Spline Smoothing. New York: Marcell Dekker
  7. Fadhilah, K. N., Suparti, dan Tarno. 2016. Pemodelan Regresi Spline Truncated untuk Data Longitudinal. Jurnal Gaussian, Vol. 5, No. 3, Hal: 447–454
  8. Harlan, J. 2018. Analisis Data Longitudinal. Depok: Gunadarma
  9. Hidayat, W. W. 2019. Konsep Dasar Investasi dan Pasar Modal. Ponorogo: Uwais Inspirasi Indonesia
  10. Sanchez, G. 2013. PLS Path Modeling with R. Berkeley: R Package
  11. Sholikha, M., Susilawati, M., dan Srinadi, I.G.A.M. 2019. Pemodelan Nilai Kurs terhadap Harga Saham pada Data Longitudinal Menggunakan Regresi Nonparametrik Spline Truncated. Jurnal Matematika, Vol. 85, No. 4, Hal: 259–263
  12. Suparti, Santoso, R., Prahutama, A., dan Devi, A. R. 2018. Regresi Nonparametrik (pertama). WADE Group
  13. Tandelilin, E. 2010. Portfolio dan Investasi: Teori dan Aplikasi. Kanisius
  14. Tirta, I. M. 2014. Aktivitas Laboratorium Statistika Virtual Berbasis Web dengan R-Shiny. Prosiding Seminar Nasional Matematika, Universitas Udayana: 6 November 2014, Hal: 235-244
  15. Wu, H., & Zhang, J. T. 2006. Nonparametric Regression Methods for
  16. Longitudinal Data Analysis: Mixed-Effects Modeling Approaches. In
  17. John Wiley and Sons, inc

Last update:

No citation recorded.

Last update:

No citation recorded.