skip to main content

PEMODELAN AUTOREGRESSIVE DISTRIBUTED LAG UNTUK MEMPREDIKSI NILAI IMPOR NON-MIGAS DI INDONESIA

*Rania Sukmana  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Tarno Tarno  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Puspita Kartikasari  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2024 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
The International Monetary Fund warns countries about the global economic recession in 2023. Efforts required from policy makers to prevent a recession. A deficit balance of payments shows signs of recession because the rate of imports is higher than exports. The highest import value over the last decade is non-oil and gas commodities. Factors affecting imports include exchange rates, prices of goods, and consumer income. Import activities require proper studies to make policies so that research is needed, one of which is by using the Autoregressive Distributed Lag (ARDL) method. ARDL is a regression model in which the independent variable consists of the current and past independent variable values and the past values of the dependent variable. The data used is from the first quarter of 2008 to the fourth quarter of 2022. The model formed is ARDL(3,2,2,1). The current non-oil and gas import is positively affected by the non-oil and gas imports at lag one, three, and four, as well as the exchange rate at lag three and is negatively affected by the non-oil and gas import and the exchange rate at lag two. The accuracy of forecasting with sMAPE is 12,12%, which means the forecast is accurate.
Fulltext View|Download
Keywords: import; non-oil and gas; forecasting; ARDL; sMAPE

Article Metrics:

  1. Bank Indonesia. 2022. Inflasi. Tersedia: https://www.bi.go.id/id/fungsi-utama/moneter/inflasi/Default.aspx (diakses pada tanggal 20 Desember 2022)
  2. Bps.go.id. 2015. Badan Pusat Statistik. Tersedia: https://www.bps.go.id (diakses pada tanggal 15 November 2022)
  3. Chen, C., Twycross, J. dan Garibaldi, J.M. 2017. A new accuracy measure based on bounded relative error for time series forecasting. PLOS ONE Vol. 12 https://doi.org/10.1371/journal.pone.0174202
  4. Ekananda, M. 2014. Ekonomi Internasional. Jakarta. Erlangga
  5. Engle, R.F. dan Granger, C.W.J. 1987. Co-Integration and Error Correction: Representation, Estimation, and Testing. Econometrica, Vol. 55. https://doi.org/10.2307/1913236
  6. Fachrudin, M., dan Syah, W.H.H. 2020. Pengaruh ACFTA, PDB dan Kurs Terhadap Impor Barang Asal Republik Rakyat Tiongkok (RRT). Jurnal Perspektif Bea dan Cukai Vol. 4, No. 2, Hal: 90-110
  7. Fitri, F., et al. 2017. Marine capture fisheries production and intensity of rainfall: An application of autoregressive distributed lag (ARDL) model. AIP Conference Proceedings Vol. 1827
  8. Ghozali, I. 2006. Aplikasi Analisis Multivariate dengan Program SPSS. Semarang. Badan Penerbit Universitas Diponegoro
  9. Gujarati, D. 1978. Terjemahan Sumarno Zain, Ekonometrika Dasar. Jakarta. Erlangga
  10. Gujarati, D.N., dan Porter, D.C. 2009. Basic Econometrics 5th Edition. New York: McGraw-Hill Inc
  11. Lewis, C. D. (1982). Industrial and business forecasting methods. London: Butterworths
  12. Makridakis, S. dan Hibbon, M. 2000. The M3-Competition: Result, Conclusion and Implications. International Journal of Forecasting Vol. 16, Hal: 451-476
  13. Makridakis, S., Wheelwright, S.C., dan Hyndman, R.J. 1998. Forecasting Methods and Applications 3rd Edition. New York: John Wiley & Sons
  14. Pradipta, M.A. dan Swara, I.W.Y. 2015. Faktor-faktor yang Mempengaruhi Impor Non-Migas Indonesia Kurun Waktu 1985-2012. E-Jurnal Ekonomi Pembangunan Vol. 4 https://ojs.unud.ac.id/index.php/eep/article/view/14855
  15. Rosadi, D. 2012. Ekonometrika dan Analisis Runtun Waktu Terapan dengan EViews. Yogyakarta: ANDI
  16. Schneeweiss, Z. 2023. Tersedia: https://www.bloomberg.com/news/articles/2023-01-02/imf-chief-georgieva-warns-of-tough-year-for-world-economy (diakses pada tanggal 2 Desember 2022)
  17. Serdawati, S. 2018. Penggunaan Metode Autoregressive Distributed Lag (ARDL) Untuk Analisis Faktor-Faktor yang Mempengaruhi Harga Emas di Indonesia Tahun 2007-2017. Skripsi. Program Studi Statistika Fakultas Matematika dan Ilmu Pengetahuan Universitas Islam Indonesia Yogyakarta
  18. Sugiyono, F.X. 2002. Neraca Pembayaran Konsep, Metodologi, dan Penerapan. Jakarta. Pusat Pendidikan dan Studi Kebanksentralan (PPSK) BI
  19. Sukirno, S. 2010. Makroekonomi Teori Pengantar. Jakarta. Rajawali Pers
  20. Tarmidi, L.T. 2003. Krisis Moneter Indonesia: Sebab, Dampak, Peran IMF dan Saran. Buletin Ekonomi Moneter dan Perbankan, Vol. 1 https://doi.org/10.21098/bemp.v1i4.183 DOI: 10.21098/bemp.v1i4.183

Last update:

No citation recorded.

Last update:

No citation recorded.