skip to main content

OPTIMASI PENGKLASTERAN MENGGUNAKAN FUZZY C-MEANS PADA PESERTA IMUNISASI RUTIN DI PROVINSI JAWA TENGAH

*Fikki Nazilaturrahma  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
sudarno sudarno  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Tarno Tarno  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2024 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Health development aims to improve the ability to lead healthy lives for the community. Health programs, especially immunization, affected by the spread of Covid-19. In Central Java, the coverage of routine immunization of infants under 5 years old is low, which can increase the risk of extraordinary events. The reason of this analyzing is to give grouped results immunization coverage that is spread irregularly and knowing areas that require more attention in improving their services. The cluster formation algorithm used is Fuzzy C-Means Clustering which is a grouping technique to determine cluster members based on their membership level where the initial value is randomly selected so that local optimum occurs, then Silhouette Coefficient and Davies Bouldin Index validation are used to obtain optimal clusters. The results of grouping 35 regencies/cities in Central Java display that the optimal quantity of clusters is 3 clusters using the Euclidean distance where the highest Silhouette Coefficient is 0.5847 and the lowest Davies Bouldin Index is 0.7785. The distribution of routine immunization in Central Java Province in 2021 is quite good, but the distribution of measles vaccine between districts or cities in Central Java Province is uneven and still relatively low.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
Untitled
Subject
Type Research Instrument
  Download (280KB)    Indexing metadata
Keywords: Immunization; Clustering; Fuzzy C-Means; Silhouette Coefficient; Davies Bouldin Index.

Article Metrics:

  1. Aini, F. N., S. Sargadi, and R. Anggrainingsih. 2014. Clustering Business Process Model Petri Net. Jurnal Itsmart Vol. 3, No. 2, Hal: 47-51
  2. Bahtiar, M. R. 2013. Fuzzy Fungsi Keanggotaan. https://www.slideshare.net/RoziqBahtiar/fuzzy-fungsi-keanggotaan-17398946. Diakses pada 11 Agustus 2023
  3. Ekawati, R. dan N. Yulis. 2013. Klasifikasi Usaha Kecil Dan Menengah (UKM) Sektor Industri Dengan Metode Fuzzy C-Means Clustering Wilayah Kota Cilegon. Seminar Nasional IENACO. Banten: Universitas Sultan Ageng Tirtayasa
  4. Gujarati, D., and D. C. Porter. 2009. Basic Econometrics Fifth Edition. Jilid 2. United States: The McGraw-Hill Companies
  5. Hair, E., T. Halle, E. Terry-Humen, B. Lavelle, and J. Calkins. 2006. Children's School Readiness in the ECLS-K: Predictions to Academic, Health, and Social Outcomes in First Grade. Early Childhood Research Quarterly Hal: 431-454
  6. Johnson, R. A. and Wichern, D.W. 2007. Applied Multivariate Statistical Analysis Sixth Edition. New Jersey: Prentice Hall International Inc
  7. Khairati, A. F., A. A. Adlina, G. F. Hertono dan B. D. Handari. 2019. Kajian Indeks Validitas Pada Algoritma K-Means Enhanced Dan K-Means MMCA. PRISMA 2 Hal. 161-170
  8. Muhammad, A. F. 2017. Klasterisasi Proses Seleksi Pemain Menggunakan Algoritma K-Means (Study Kasus : Tim Hockey Kabupaten Kendal). Jurnal Teknik Informatika FIK UDINUS No. 5-11
  9. Nugroho, S. 2008. Statistika Multivariat Terapan. Edisi Pertama. Bengkulu:UNIB Press
  10. Nurjanah, A. Farmadi, dan F. Indriani. 2014. Implementasi Metode Fuzzy C-Means Pada Sistem Clustering Data Varietas Padi. Jurnal Ilmu Komputer Vol. 1, No. 1. Hal: 23-32
  11. Talakua, M. W., Z. A. Leleury, and A. W. Talluta. 2017. Analisis Cluster dengan Menggunakan Metode K-Means untuk Pengelompokan Kabupaten/Kota di Provinsi Maluku berdasarkan Indikator Indeks Pembangunan Manusia Tahun 2014. Barekeng : Jurnal Ilmu Matematika dan Terapan Vol. 11, No. 2, Hal: 119- 128
  12. Utami, D. S., and D. R. S. Saputro. 2018. Pengelompokan Data yang Memuat Pencilan dengan Kriteria Elbow dan Koefisien Silhouette (Algoritma K-Medoids). https://publikasiilmiah.ums.ac.id/handle/11617/10118?show=ful l. Diakses pada 9 Agustus 2023
  13. Vendramin, L., R. Campello, and E. R. Hruschka. 2009. On the Comparison of Relative Clustering Validity Criteria. Proceedings of the SIAM International Conference on Data Mining Vol. 3, No. 4, Hal: 733-744

Last update:

No citation recorded.

Last update:

No citation recorded.