skip to main content

PERBANDINGAN METODE FUZZY C-MEANS DAN GUSTAFSON-KESSEL DALAM PENENTUAN CLUSTER TINGKAT RISIKO PENULARAN TUBERCULOSIS TERHADAP PENYAKIT DI JAWA TIMUR

*Atika Nurzida  -  Departemen Statistika, Fakultas Sains dan Matematika, Undip, Indonesia
Iut Tri Utami  -  , Indonesia
Masithoh Yessi Rochayani  -  , Indonesia
Open Access Copyright 2024 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Tuberculosis (TB) is a type of disease that is easily transmitted to people with weak immune systems. The disease factors that are most susceptible to TB transmission in East Java Province are Diabetes Mellitus (DM) sufferers, malnutrition toddlers, and HIV sufferers. The aim of this study was to form clusters in districts/cities with DM sufferers, malnutrition toddlers, and HIV sufferers to minimize the risk of TB transmission. Fuzzy clustering analyzes that are often used are Fuzzy C-Means and Gustafson-Kessel. Fuzzy C-Means uses the Euclidean distance squared function to form spherical clusters, while Gustafson-Kessel uses the Mahalanobis distance squared function to form ellipsoid clusters. The optimal number of clusters is determined by the Dunn Index (DI) value. The results showed that the formation of regional clusters was optimal in the Gustafson-Kessel method with 2 clusters as indicated by a DI value of 0.974603. Cluster 1 consists of 4 regencies/cities with an average of DM sufferers, malnutrition toddlers, and HIV sufferers namely 86.448 people, 2.841 people, and 87 people. Cluster 2 consists of 34 districts/cities with an average of DM sufferers, malnutrition toddlers, and HIV sufferers namely 10.449 people, 3.364 people, and 72 people.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
Perbandingan Metode Fuzzy C-Means dan Gustafson-Kessel Clustering untuk Mengelompokkan Tingkat Risiko Penularan Tuberculosis
Subject
Type Research Instrument
  Download (19KB)    Indexing metadata
Keywords: Clustering, Fuzzy C-Means, Gustafson-Kessel, Dunn Index, Tuberculosis

Article Metrics:

  1. Amalia, N.A., Widodo, D.A., & Oktaviana, P.P. 2016. Analisis Clustering Perusahaan Sub Sektor Perbankan Berdasarkan Rasio Keuangan CAMELS Tahun 2014 Menggunakan Metode Fuzzy C-Means dan Fuzzy Gustafson-Kessel. Jurnal GARUDA Vol. 5, No. 2: Hal. 321 – 326
  2. Dinkes Provinsi Jawa Timur. 2021. Profil Kesehatan 2021. Dinkes Jatim
  3. Fenny, D. 2019. Analisis Perbandingan Cosine Normalization dan Min-Max Normalization pada Pengelompokan Terjemahan Ayat Al-Qur’an Menggunakan Algoritma K-Means Clustering. Skripsi. Jakarta: UIN Syarif Hidayatullah
  4. Gustafson, D. & Kessel, W. 1979. Fuzzy Clustering with a Fuzzy Covariance Matrix, in: Proceedings of the IEEE CDC, San Diego, CA, USA, pages: 761 – 766
  5. Kassambara, A. 2017. Practical Guide to Cluster Analysis in R 1st Edition. STHDA.com
  6. Khairati, A.F., Adlina, A., Hertono, G., & Handari, B. 2019. Kajian Index Validitas pada Algoritma K-Means Enhanced dan K-Means MMCA Jurnal PRISMA Vol. 2: Hal. 161 – 170
  7. Kominfo Provinsi Jawa Timur. 2022. Peringati Hari TBC Sedunia, Khofifah Bertekad Jatim Capai Eliminasi TBC di Tahun 2030. URL: https://kominfo.jatimprov.go.id/berita/peringati-hari-tbc-sedunia-khofifah-bertekad-jatim-capai-eliminasi-tbc-di-tahun-2030. Diakses tanggal 23 Februari 2023
  8. Lesot, M. J. & Kruse, R. 2008. Gustafson-Kessel-like Clustering Algorithm Based on Typicality Degrees. Uncertainty & Intelligence Information Systems Journal., pp. 117 – 130
  9. Mihardja, L., Lolong, D.B., & Lannywati, G. 2015. Prevalensi Diabetes Melitus pada Tuberkulosis dan Masalah Terapi. Jurnal Ekologi Kesehatan Vol. 14, No. 4: Hal. 350 – 358
  10. Putri et al., R. K. 2019. Implementasi Algoritma Modified Gustafson-Kessel untuk Clustering Tweets pada Akun Twitter Lazada Indonesia. Jurnal Gaussian Vol. 8, No. 3: Hal. 285 - 295
  11. Rahmatika, L., Suparti, & Safitri, D. 2015. Analisis Kelompok dengan Algoritma Fuzzy C-Means dan Gustafson Kessel Clustering pada Indeks LQ45. Jurnal Gaussian Vol. 4, No. 3: Hal. 543 – 552
  12. Santoso, S. 2012. Panduan Lengkap SPSS Versi 20. Jakarta: PT Elex Media
  13. Komputindo
  14. Tan, P.N., Steinbach, M., & Kumar, V. 2006. Introduction to Data Mining. Boston:Pearson Education
  15. Tulu, B., Dida, N., Kassa, Y., & Taye, B. 2014. Smear Positive Pulmonary Tuberculosis and Its Risk Factors Among Tuberculosis Suspect in South East Ethiopia; a Hospital Based Cross-sectional Study. BMC Res Notes, Vol. 7: Pages. 285
  16. UNICEF. 2018. An Agenda for Action on Chilhood Tuberculosis. URL: https://data.unicef.org/wp-content/uploads/2018/03/TB-Advocacy-Brochure-Final-3_21-high-Res.pdf. Diakses tanggal 24 Juni 2023
  17. WHO. 2023. Tuberculosis. URL: https://www.who.int/news-room/fact-sheets/detail/tuberculosis. Diakses tanggal 2 Maret 2023
  18. Widarjono, A. 2010. Analisis Statistika Multivariat Terapan Edisi pertama. Yogyakarta: UPP STIM YKPN
  19. Widyastuti, N., Nugraheni, W., Wahyono, T., & Yovsyah, Y. 2021. Hubungan Status Gizi dan Kejadian Tuberculosis Paru pada Anak Usia 1-5 Tahun di Indonesia (Analisis Data Riskesdas 2018). Buletin Penelitian Sistem Kesehatan. Vol. 24, No. 2, Hal: 89 – 96

Last update:

No citation recorded.

Last update:

No citation recorded.