skip to main content

PREDIKSI CALON NASABAH GADAI POTENSIAL PADA PT. PEGADAIAN (PERSERO) MENGGUNAKAN SUPPORT VECTOR MACHINE DENGAN ALGORITMA GENETIKA

*Muhammad Abdul Aziz  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Rukun Santoso  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Budi Warsito  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2024 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
PT Pegadaian is a company that offers business capital loans to customers by providing collateral or a pawn system. Customers who cannot repay loans and are in arrears are considered non-potential. Non-potential customers are harm the company because it reduces capital and profits. Statistical methods are needed to predict potential. Predictions are made using the classification method, in this research is Support Vector Machine (SVM). However SVM has a weakness in determining optimal parameters, so optimization is carried out using genetic algorithms to help find optimal classification parameters. Genetic algorithms are used to find optimal solutions to problems by imitating observed processes. This study uses customer data and proof of pawn PT Pegadaian Kebumen on January 3rd 2022 – November 29th 2022. The support vector machine model is formed with a percentage of 80% for training data and 20% for test data. The conclusion in this study was that SVM-GA increased the accuracy obtained from 86,6% being 94,2%.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
Untitled
Subject
Type Research Instrument
  Download (720KB)    Indexing metadata
Keywords: Prediction; Customers; Pawn; PT Pegadaian; Support Vector Machine; Genetic Algorithm

Article Metrics:

  1. Cortes, C,, & Vapnik, V, (1995), Support-Vector Networks, Machine Learning, 20(3)
  2. Elly. S., Sabariah. M. K., & Gozali. A. A. 2015. Impelentasi Metode Support Vector Machine Untuk Melakukan Klasifikasi Kemacetan Lalu Lintas Pada Twitter. eProceedings of Engineering 2.1
  3. Goldberg, D, E, (1989), Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Reading, MA, 1989, NN Schraudolph and J., 3
  4. Hastie. T., Tibshirani. R., Friedman. J. H., & MyiLibrary. 2001. The elements of statistical learning data mining. inference. and prediction : with 200 full-color illustrations. Springer Series in Statistics
  5. Haupt. R. L. H. and S. E. 2004. Practical Genetic Algorithms MATLAB Code. John Wiley & Sons
  6. Herdianto. 2013. Prediksi Kerusakan Motor Induksi Menggunakan Metode Jaringan Saraf Tiruan Backpropagation. Fakultas Teknik. Universitas Sumatera Utara. Medan
  7. Pegadaian. 2022. Sejarah Perusahaan Pegadaian. www.pegadaian.co.id/
  8. Raharjo. S., & Winarko. E. 2014. Klasterisasi. klasifikasi dan peringkasan teks berbahasa indonesia. Kommit 2014. 8(Kommit)
  9. Santosa, B, (2007), Feature Selection with Support Vector Machines Applied on Tornado Detection, IPTEK The Journal for Technology and Science, 18(1)
  10. Schaffer. J. D., Caruana. R. A., Eshelman. L. J., & Das. R. 1989. A study of control parameters affecting online performance of genetic algorithms for function optimization. Proceedings of the Third International Conference on Genetic Algorithms
  11. Siringoringo. R., & Jamaludin. J. 2019. Text Mining dan Klasterisasi Sentimen Pada Ulasan Produk Toko Online. Jurnal Teknologi Dan Ilmu Komputer Prima (JUTIKOMP). 2(1)
  12. Yanaeng, S., Saelee, S. dan Samai, W., 2014. Automatic Medical Case Study Essay Scoring by Support Vector Machine and Genetic Algorithms. International Journal of Information and Education Technology, IV(2), pp. 132-137

Last update:

No citation recorded.

Last update:

No citation recorded.