skip to main content

PERAMALAN HARGA SAHAM PT INDOFOOD SUKSES MAKMUR TBK MENGGUNAKAN MODEL HIBRIDA SINGULAR SPECTRUM ANALYSIS (SSA) – AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA)

Rara Taskia Dewanti  -  Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Sebelas Maret, Jalan Ir. Sutami 36A Kentingan Jebres, Surakarta, Indonesia 57126, Indonesia
*Etik Zukhronah orcid scopus publons  -  Prodi Statistika Universitas Sebelas Maret, Indonesia
Winita Sulandari orcid  -  Prodi Statistika Universitas Sebelas Maret, Indonesia
Open Access Copyright 2024 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Daily stock price data can be predicted by examining the data pattern. SSA is a flexible nonparametric forecasting technique. ARIMA is a good technique for basic forecasting. In order to increase accuracy, hybrid method combines two or more forecasting techniques. The purpose of this study is to use the SSA-ARIMA hybrid model to forecast the stock price of PT Indofood Sukses Makmur. The August through December 2023 daily closing stock price data of PT Indofood Sukses Makmur Tbk is the source of the data. Testing data begins on November 29th and ends on December 29th, 2023, while training data runs from August 1st to November 28th 2023. SSA is used to model the training data. ARIMA is used to simulate the SSA residuals. Summing the outcomes of SSA and ARIMA forecasting yields the forecast for the SSA-ARIMA hybrid model. The findings demonstrated that the MAPE values of the SSA-ARIMA(1,0,0) and SSA-ARIMA(0,0,1) models were 1.54% for testing data and 0.82% for training data. Therefore, the SSA-ARIMA hybrid model has very good forecasting ability for PT Indofood Sukses Makmur's stock price.
Fulltext View|Download
Keywords: Stock Price; Forecasting; SSA; ARIMA; Hybrid

Article Metrics:

  1. Arumsari, M., Wahyuningsih, S., dan Siringoringo, M. 2021. Peramalan Inflasi Provinsi Kalimantan Timur Menggunakan Model Hybrid Singular Spectrum Analysis-Autoregressive Integrated Moving Average. Jurnal Matematika, Statistika, dan Komputasi. Vol. 18(1), 78-92
  2. Darmawan, G., Rosadi, D., and Ruchjana, B.N. 2022. Hybrid Model of Singular Spectrum Analysis and ARIMA for Seasonal Time Series Data. Jurnal Matematika Murni dan Aplikasi. Vol. 7(2), 302-315
  3. Golyandina, N. and Korobeynikov, A. 2014. Basic Singular Spectrum Analysis and Forecasting with R. Computational Statistics dan Data Analysis. Vol. 71, 934-954
  4. Golyandina, N., Nekrutkin, V., and Zhigljavsky, A.A. 2001. Analysis of Time Series Structure: SSA and Related Techniques. Chapman & Hall CRC
  5. Hassani, H. and Thomakos, D. 2010. A Review on Singular Spectrum Analysis for Economic and Financial Time Series. Statistics and Its Interface. Vol. 3, 377- 397
  6. Hidayana, R.A. dan Ruchjana, B.N. 2023. Peramalan Return Saham Menggunakan Model Integrated Moving Average. Jambura Journal of Mathematics. Vol. 5(1), 199-209
  7. Hyndman, R.J., Koehler, A.B., Ord, J.K., and Snyder, R.D. 2009. Monitoring Processes with Changing Variances. International Journal of Forecasting. Vol. 25(3), 518-525
  8. Idrus, R.A., Ruliana dan Aswi. 2022. Penerapan Metode Singular Spectrum Analysis dalam Peramalan Jumlah Produksi Beras di Kabupaten Gowa. Journal of Statistics and Its Application on Teaching and Research. Vol. 4(2), 49-58
  9. Ilahi, E.P.S.P., Zukhronah, E., dan Susanti, Y. 2023. Model Hibrida Singular Spectrum Analysis (SSA) dan Autoregressive Integrated Moving Average (ARIMA) untuk Peramalan Indeks Harga Konsumen. Prosiding Seminar Nasional Pendidikan Matematika Ahmad Dahlan. Yogyakarta. Universitas Ahmad Dahlan
  10. Irmawati, D.R., Atok, R.M., and Suhartono. 2018. Singular Spectrum Analysis-ARIMA Modelling for Direct and Indirect Forecasting of Farmer’s Term of Trade in East Java. International Conference on Information and Communications Technology, 889-894
  11. Laskarjati, S.D. dan Ahmad, I.S. 2022. Perbandingan Peramalan Harga Saham Autoregressive Integrated Moving Average (ARIMA) dan Fuzzy Time Series Markov Chain (Studi Kasus: Saham PT Indofood CBP Sukses Makmur Tbk). Jurnal Sains dan Seni ITS. Vol. 11(6), 397-404
  12. Rahmawati, Y.F., Zukhronah, E., dan Pratiwi, H. 2021. Penerapan Model ARIMA-ARCH untuk Meramalkan Harga Saham PT Indofood Sukses Makmur Tbk. Business Innovation and Entrepreneurship Journal. Vol. 03(03), 171-177
  13. Sodiqin, M.A., Sulandari, W., and Respatiwulan. 2021. The Application of Singular Spectrum Analysis Method in Forecasting The Number of Foreign Tourists Visit to Special Capital Region of Jakarta. Jurnal Riset dan Aplikasi Matematika. Vol. 05(02), 92-102
  14. Wei, W.W.S. 2006. Time Series Analysis: Univariate and Multivariate Methods (2nd ed.). California. Addison-Wesley Publishing Company
  15. Zhang, G.P. 2003. Time Series Forecasting Using a Hybrid ARIMA and Neural Network Model. Neurocomputing. Vol. 50, 159-175
  16. Zhang, T., Wang, K., and Zhang, X. 2015. Modelling and Analyzing the Transmission Dynamics of HBV Epidemic in Xinjiang, China. Plos One. Vol. 10(9), 110-121

Last update:

No citation recorded.

Last update:

No citation recorded.