slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor
ESTIMASI RISIKO PORTOFOLIO SAHAM MENGGUNAKAN METODE VALUE-AT-RISK (VaR) DENGAN PENDEKATAN GARCH-COPULA | Farikha | Jurnal Gaussian skip to main content

ESTIMASI RISIKO PORTOFOLIO SAHAM MENGGUNAKAN METODE VALUE-AT-RISK (VaR) DENGAN PENDEKATAN GARCH-COPULA

*Afifah Nurul Farikha  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
agus rusgiyono  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Triastuti Wuryandari  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2024 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Indonesia's economic development has recently experienced turmoil due to the pandemic Covid-19 which affects capital market condition, so it is necessary to analyze characteristics of stock prices and returns also the investment risks. Investment risk measurement using Value at Risk (VaR) estimation will be determined by simulation Monte Carlo with GARCH-Copula approach. This research will use BRPT and ICBP stock data for the period before the Covid-19 pandemic, January 2, 2017 - February 28, 2020 and the period after the Covid-19 pandemic, March 2, 2020 - February 28, 2023.The best model of copula on the period before the Covid-19 pandemic is Frank copula and for the period after the Covid-19 pandemic is Clayton copula. Using the selected model, an accurate VaR based on back testing result for the period before the Covid-19 pandemic is -0.01973782 and the period after the Covid-19 pandemic is -0.02353096.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
CTA Form
Subject
Type Research Instrument
  Download (1MB)    Indexing metadata
Keywords: Covid-19; GARCH; Copula; Value at Risk; Backtesting

Article Metrics:

  1. Ab Razak, & R., Ismail, N. 2016. Portfolio risk of bivariate financial returns using copula-VaR approach: A case study on Malaysia and U.S. stocks markets. Global Journal of Pure and Applied Mathematics. 12(3): 1947-1964
  2. Ab Razak, R., & Ismail, N. 2019. Dependence Modeling and Portfolio Risk Estimation using GARCH-Copula Approach. Sains Malaysiana. 48(7): 1547-1555
  3. Best, P. 1998. Implementing Value at Risk. John Wiley & Sons
  4. Cherubini, U., Elisa, L., & Vecchiato, W. 2004. Copula Methods in Finance. Chichester: John Wiley & Sons, Ltd
  5. Engle, R.F., & Ng, V.K. 1993. Measuring and Testing the Impact of News on Volatility. The Journal of Finance. 5(48)
  6. Francis, Jack Clark. 1991. Investment: Analysis and Management. New York: McGraw-Hill
  7. Halilbegovic, S., & Vehabovic, M. 2016. Backtesting Value at Risk Forecast: the Case of Kupiec Pof-Test. Russian Federation European Journal of Economic Studies, 3(17): 393-404
  8. Hassani, H., & Yeganegi, M.R. 2020. Selecting Optimal Lag Order in Ljung-Box Test. Physica A. 541
  9. Jorion, P. 2007. Value at Risk: The New Benchmark for Managing Financial Risk (Third Edition). New York: The McGraw-Hill Companies
  10. Maruddani, D.A.I., & Purbowati, Ari. 2009. Pengukuran Value at Risk pada Aset Tunggal dan Potofolio dengan Simulasi Monte Carlo. Media Statistika. 93-104(2)
  11. Nurcahyani, A.W., Saputro, D.S., & Kurdhi, N.A. 2016. Korelasi Kendall untuk Estimasi Parameter Distribusi Clayton-copula Bivariat. Seminar Nasional Matematika dan Pendidikan Matematika UNY, MS 53-MS 58
  12. Nelsen, R.B. 2006. An Introduction to Copula. New York: Springer
  13. Prihandini, Y.A., Dharmawan, K., & Sari, K. 2015. Penerapan Model EGARCH pada Estimasi Volatilitas Harga Minyak Kelapa Sawit. E-Jurnal Matematika, 3(4): 141-145
  14. Sartika, Qorina R., Widiharih, Tatik, & Mukid, M.Abdul. 2019. "Value at Risk in Stock Portfolio using T-Copula: Case Study of PT. Indofood Sukses Makmur, Tbk. and Bank Mandiri (Persero), Tbk.". Media Statistika. 175-187(2)
  15. Tsay, R. S. 2010. Analysis of Financial Time Series. New Jersey: John Wiley and Sons, Inc
  16. Wei, W.W.S. 2007. Time Series Analysis: Univariate and Multivariate Methods (Second Edition). Canada: Pearson Addison Wesley Company

Last update:

No citation recorded.

Last update:

No citation recorded.