slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor
PENERAPAN MODEL WEIBULL PROPORTIONAL HAZARD DAN REGRESI COX PROPORTIONAL HAZARD PADA KONDISI FINANCIAL DISTRESS | Sarumpaet | Jurnal Gaussian skip to main content

PENERAPAN MODEL WEIBULL PROPORTIONAL HAZARD DAN REGRESI COX PROPORTIONAL HAZARD PADA KONDISI FINANCIAL DISTRESS

*Amelinda Nathania Sarumpaet  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Triastuti Wuryandari  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Sudarno Sudarno  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2024 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Companies must sustain their existence due to the business world's quick and competitive growth. In order to prevent financial distress, the corporation must manage its financial situation. One technique for figuring out the causes of financial distress is survival analysis. In survival analysis, two models are known, namely the parametric model and the semiparametric model. In this study, the parametric model uses Weibull Proportional Hazard while the semiparametric model applies Cox Proportional Hazard regression using Efron approach to overcome ties. The study's objective is to model the incidence of financial crises in Indonesian utilities, transportation, and other infrastructure providers between the years 1990 and 2021, and to compare the two methods. The length of time that a company has gone without experiencing a financial crisis is a dependent variable in this study where the independent variables consist of solvency ratio, liquidity ratio, growth ratio, profitability ratio, firm size, and activity ratio. Model selection to get the most suitable model can be done with the smallest AIC criteria. The results of the analysis obtained the appropriate model is the Weibull Proportional Hazard model with an AIC value of 282.117 and produces two significant variables, namely liquidity ratio and profitability ratio.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
Untitled
Subject
Type Research Instrument
  Download (316KB)    Indexing metadata
Keywords: Financial Distress; Weibull Proportional Hazard; Cox Proportional Hazard Regression; Efron Method

Article Metrics:

  1. Allison, P. D. 2010. Survival Analysis Using SAS: A Practical Guide, Second Edition. Cary, NC: SAS Institute Inc
  2. Collett, D. 2015. Modelling Survival Data in Medical Research. Edisi Ketiga. New York: Chapman and Hall
  3. Kasmir. 2019. Analisis Laporan Keuangan. Jakarta: PT Raja Grafindo Persada
  4. Klein, J. P., dan Moeschberger, M. L. 2003. Survival Analysis Techniques for Censored and Truncated Data. New York: Springer-Verlag
  5. Kleinbaum, D. G., dan Klein, M. 2012. Survival Analysis: A Self-Learning Text. New York: Springer
  6. Kristanti, F. T., Rahayu, S., dan Huda, A. N. 2016. The Determinant of Financial Distress on Indonesian Family Firm. Procedia - Social and Behavioral Sciences No. 219 Hal: 440–447. https://www.sciencedirect.com/science/article/pii/S1877042816300787/pdf DOI: 10.1016/j.sbspro.2016.05.018
  7. Lee, E. T., dan Wang, J. W. 2003. Statistical Methods for Survival Data Analysis (Third). New York: John Wiley & Sons, Inc
  8. O’Quigley, J., dan Roberts, A. 1980. Weibull: A Regression Model for Survival Time Studies. Computer Programs in Biomedicine Vol. 12, Hal: 14–18. DOI: 10.1016/0010-468X(80)90106-3
  9. Platt, H. D., dan Platt, M. B. 2002. Predicting Corporate Financial Distress: Reflections on Choice-Based Sample Bias. Journal of Economics and Finance Vol. 26, No. 2, Hal: 184–199. DOI: 10.1007/BF02755985
  10. Prabawati, S., Nasution, Y. N. and Wahyuningsih, S. 2018. Analisis Survival Data Kejadian Bersama dengan Pendekatan Efron Partial Likelihood (Studi Kasus: Lama Masa Studi Mahasiswa Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Mulawarman Angkatan 2011), Jurnal Eksponensial Vol. 9, No. 1, Hal: 75–84. http://jurnal.fmipa.unmul.ac.id/index.php/exponensial/article/view/278/130
  11. Pranita, K. R., dan Kristanti, F. T. 2020. Analisis Financial Distress Menggunakan Analisis Survival. Nominal: Barometer Riset Akuntansi Dan Manajemen, Vol. 9, No. 2, Hal: 62–79. https://journal.uny.ac.id/index.php/nominal/article/view/30917/13698
  12. DOI: 10.21831/nominal.v9i2.30917
  13. Silalahi, H. R. D., Kristanti, F. T., dan Muslih, M. 2018. Perusahaan Sub-Sektor Transportasi yang Terdaftar di Bursa Efek Indonesia (BEI) Periode 2013-2016. E-Proceeding of Management, Vol 5, No. 1, Hal: 796–802
  14. Xin, X. 2011. A Study of Ties and Time Varying Covariate in Cox Proportional Hazard Model. The University of Guelph
  15. Yoza, N. N., dan Syofyan, E. 2021. Pengaruh Penerapan Good Corporate Governance dan Struktur Kepemilikan terhadap Kinerja Perusahaan: Studi Empiris pada Perusahaan Non Keuangan. Jurnal Eksplorasi Akuntansi Vol. 3, No. 4, Hal: 720-733. http://jea.ppj.unp.ac.id/index.php/jea/article/view/398/316
  16. DOI: 10.24036/jea.v3i4.398
  17. Zhang, Z. 2016. Parametric Regression Model for Survival Data: Weibull Regression Model As An Example. Annals of Translational Medicine Vol. 4, No. 24. Hal: 1-8. https://atm.amegroups.com/article/view/11446/pdf
  18. DOI: 10.21037/atm.2016.08.45

Last update:

No citation recorded.

Last update:

No citation recorded.