skip to main content

PERAMALAN HARGA MINYAK MENTAH INDONESIA MENGGUNAKAN ALGORITMA RANDOM FOREST

Selvi Annisa orcid  -  Program Studi Statistika, Universitas Lambung Mangkurat, Jl. A. Yani KM.35,5, Banjarbaru, Indonesia, Indonesia
*Yeni Rahkmawati orcid scopus  -  Program Studi Statistika, Universitas Lambung Mangkurat, Jl. A. Yani KM.35,5, Banjarbaru, Indonesia, Indonesia
Hardianti Hafid orcid  -  Program Studi Statistika, Universitas Negeri Makassar, Jln. Daeng Tata, Makassar, 90224, Indonesia, Indonesia
Open Access Copyright 2024 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Crude oil prices are a critical global macroeconomic indicator, influencing central bank policies, investment strategies, and the pricing of oil-dependent goods. Accurate forecasting of crude oil prices is essential for informed decision-making in these areas. This study aims to forecast the price of Indonesian crude oil from April 2024 to December 2024 using the Random Forest algorithm. A quantitative approach utilizes monthly data on Indonesian crude oil prices from August 2017 to March 2024. The forecasting performance is evaluated using the Mean Absolute Percentage Error (MAPE). The findings indicate that the Random Forest model, with Lag 1 as the input variable, produces forecasts with a MAPE of 6.215%, categorized it as excellent. The projected price range for Indonesian crude oil from April to December 2024 is between 70 and 87 USD per barrel. This forecast suggests potential price fluctuations driven by geopolitical conflicts in Europe and the Middle East, global demand for crude oil, and varying economic growth rates.
Fulltext View|Download
Keywords: Machine learning; Time series; Random Forest; Crude oil

Article Metrics:

  1. Abdollahi, H. dan Ebrahimi, S. B. 2020. A new hybrid model for forecasting Brent crude oil price. Energy, vol. 200. https://doi.org/10.1016/j.energy.2020.117520
  2. Breiman, L. 2001. Random forests. Machine Learning, vol. 45, no. 1, hh. 5–32
  3. Chen, R. J. C., Bloomfield, P., dan Fu, J. S. 2003. An evaluation of alternative forecasting methods to recreation visitation. Journal of Leisure Research, vol 35, no. 4, hh. 441–454
  4. Ellwanger, R. dan Snudden, S. 2023. Forecasts of the real price of oil revisited: Do they beat the random walk?. Journal of Banking & Finance, vol. 154. https://doi.org/10.1016/j.jbankfin.2023.106962
  5. Genuer, R. dan Poggi, JM. 2020. Random Forests. In: Random Forests with R. Use R!. Springer Cham. https://doi.org/10.1007/978-3-030-56485-8_3
  6. Gradojevic, N., Kukolj, D., Adcock, R. dan Djakovic, V. 2023. Forecasting Bitcoin with technical analysis: A not-so-Random Forest?. International Journal of Forecasting, vol. 39, no. 1, hh. 1-17. https://doi.org/10.1016/j.ijforecast.2021.08.001
  7. Gumus, M., dan Kiran, M. S. 2017. Crude oil price forecasting using XGBoost. 2017 International Conference on Computer Science and Engineering (UBMK), hh. 1100–1103. https://doi.org/10.1109/UBMK.2017.8093500
  8. Iskandar, D. Z. H. dan Ramdhani, Y. 2023. Optimasi Parameter Random Forest menggunakan Grid Search Untuk Analisis Time series. PETIR: Jurnal Pengkajian dan Penerapan Teknik Informatika, vol. 16, no. 2, hh. 267-277. https://doi.org/10.33322/petir.v16i2.2084
  9. Kementerian ESDM Ditjen Migas. 2022. Rerata ICP Juni 2022 Naik Jadi US$117,62 per Barel. Dikutip dari https://migas.esdm.go.id/post/read/rerata-icp-juni-2022-naik-jadi-us-117-62-per-barel
  10. Kementerian ESDM Ditjen Migas. 2023a. ICP Juni 2023 Turun Rendah Sebesar US$0,76 Per Barel Dibandingkan Mei 2023. Dikutip dari https://migas.esdm.go.id/post/read/icp-juni-2023-turun-rendah-sebesar-us-0-76-per-barel-dibandingkan-mei-2023
  11. Kementerian ESDM Ditjen Migas. 2023b. Menteri ESDM Tetapkan ICP Minyak Mentah Indonesia November 2023 sebesar US$79,63 Per Barel. Dikutip dari https://migas.esdm.go.id/post/read/menteri-esdm-tetapkan-icp-minyak-mentah-indonesia-november-2023-sebesar-us-79-63-per-barel
  12. Kementerian ESDM Ditjen Migas. 2024. ICP Maret Ditetapkan USD83,79 Perbarel. Dikutip dari https://www.esdm.go.id/id/media-center/arsip-berita/icp-maret-ditetapkan-usd8379-perbarel
  13. Nugraheni, R. D. dan Inayah, I. 2022. Dampak Pandemi COVID-19 Terhadap Harga Minyak dan Pangan Dunia: Analisis VECM. Jurnal Ekonomi dan Pembangunan, vol. 30, no. 1, hh. 15-29. https://doi.org/10.14203/JEP.30.1.2022.15-29
  14. Plakandaras, V., Gupta, R., Gogas, P., dan Papadimitriou, T. 2015. Forecasting the U.S. real house price index. Economic Modelling, vol. 45, hh. 259–267. https://doi.org/10.1016/j.econmod.2014.10.050
  15. Pratomo, A., Umbara, R. F. dan Rohmawati, A. A. 2019. Prediksi Pergerakan Harga Saham dengan Metode Random Forest Menggunakan Trend Deterministic Data Preparation (Studi Kasus Saham Perusahaan PT Astra International Tbk, PT Garuda Indonesia Tbk, dan PT Indosat Tbk). eProceedings of Engineering, vol. 6, no. 1, hh. 2545-2556
  16. Rianto, M. dan Yunis, R. 2021. Analisis Runtun Waktu untuk Memprediksi Jumlah Mahasiswa Baru dengan Model Random Forest. Paradigma, vol. 23, no. 1, hh 70-74. https://doi.org/10.31294/p.v21i2
  17. Veeramsetty, V., dkk. 2022. Short-term electric power load forecasting using Random Forest and gated recurrent unit. Electrical Engineering, vol. 104, hh. 307–329. https://doi.org/10.1007/s00202-021-01376-5
  18. Xue, B., Tong, N., Xu, X. dan He, X. 2019. Dynamical Short-Term Prediction of Rain Attenuation in W Band: A Time-Series Model With Simpler Structure and Higher Accuracy. IEEE Antennas and Propagation Magazine, vol. 61, no. 1, 77-86. https://doi.org/10.1109/MAP.2018.2883017
  19. Yoon, J. 2020. Forecasting of Real GDP Growth Using Machine Learning Models: Gradient Boosting and Random Forest Approach. Computational Economics, vol. 57, no. 1, hh. 247–265. https://doi: 10.1007/s10614-020-10054-w

Last update:

No citation recorded.

Last update:

No citation recorded.