skip to main content

PEMODELAN DATA GEOSPASIAL BALITA KURANG GIZI DENGAN PENDEKATAN GEOGRAPHICALLY WEIGHTED REGRESSION PRINCIPAL COMPONENT ANALYSIS

Cinta Rizki Oktarina  -  Department of Statistics, Universitas Bengkulu, Jl. WR. Supratman, Kandang Limun, Bengkulu City, Bengkulu 38371, Indonesia
*Idhia Sriliana  -  Program Studi Statistika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Bengkulu, Indonesia
Esa Nur Fadhillah Sidik  -  Program Studi Statistika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Bengkulu, Indonesia
Muhammad Akbar Firmansyah  -  Program Studi Statistika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Bengkulu, Indonesia
Open Access Copyright 2024 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
This study examines the factors that influence under-five malnutrition in Indonesia using the Geographically Weighted Regression Principal Component Analysis (GWRPCA) method. The GWRPCA approach was chosen to overcome the problems of multicollinearity and spatial heterogeneity that often occur in geospatial data analysis. This study uses 10 factors that are thought to influence under-five malnutrition used as the dependent variable. Malnutrition in under-fives increases the risk of disease, death, and stunting, with data showing a caseload of 10.2% or 805,000 under-fives experiencing malnutrition. GWRPCA analysis successfully reduced data dimensionality and spatial heterogeneity by selecting four principal components that explained 81.4% of the total data variance, encompassing important information from the independent variables associated with under-five malnutrition. By using these principal components, the study was able to more efficiently identify the main determinants of undernutrition among children under five.
Fulltext View|Download
Keywords: Malnutrition; Principal Components; Spatial Heterogeneity; Multicollinearity

Article Metrics:

  1. Aini, Z.U.N. & Margareta, J., 2023. Analisis hubungan penduduk miskin, sanitasi dan imunisasi dasar dengan kejadian gizi buruk pada balita. Hearty, 11(1), pp.42-48
  2. Alvin C. Rencher & Christensen, W. F. 1995. Methods of Multivariate Analysis. A John Wiley & Sons, Inc., Publication. Available at: https://doi.org/10.5860/choice.33-1586
  3. Basyariyah, Q., Diyanah, K.C. & Pawitra, A.S., 2022. Hubungan ketersediaan sanitasi dasar terhadap status gizi baduta di Desa Pelem, Bojonegoro. Jurnal Kesehatan Lingkungan Indonesia, 21(1), pp.18-26
  4. Chen, J., Qu, M., Zhang, J., Xie, E., Zhao, Y. & Huang, B., 2021. Improving The Spatial Prediction Accuracy of Soil Alkaline Hydrolyzable Nitrogen Using GWRPCA‐GWRK. Soil Science Society of America Journal, Vol. 85, pp.879-892
  5. Emmanuel, B. O., Maureen, N., & Wonu, N. 2020. Detection of Non-Normality in Data Sets and Comparison Between Different Normality Tests. AJPAS
  6. Fotheringham, A. S., Brunsdon, C., & Charlton, M. 2002. Geographically Weighted Regression. 1st ed. John Wiley & Sons, Ltd
  7. Han, J., Kang, X., Yang, Y. & Zhang, Y., 2023. Geographically And Temporally Weighted Principal Component Analysis: A New Approach for Exploring Air Pollution Non-Stationarity in China, 2015–2019. Journal of Spatial Science, Vol 68, pp.451-468
  8. Johnson, R.A. & Wichern, D.W., 2002. Applied Multivariate Statistical Analysis. 6th edition. New Jersey: Pearson Prentice Hall
  9. Kemenkes RI. 2020. Buku Saku Pencegahan dan Tata Laksana Gizi Buruk Pada Balita di Layanan Rawat Jalan Bagi Tenaga Kesehatan. Kemenkes RI: Jakarta
  10. Kevin, A. 2020. Dampak Gizi Buruk Terhadap Kesehatan dan Daya Tahan Tubuh - Alodokter. Alodokter. Available at: https://www.alodokter.com/dampak-gizi-buruk-terhadap-kesehatan-dan-daya-tahan-tubuh
  11. Li, G., Chen, W., Li, R., Chen, Y., Bi, H., Zhao, H. & Li, L., 2020. Prediction Of AOD Data By Geographical And Temporal Weighted Regression With Nonlinear Principal Component Analysis. Arabian Journal of Geosciences, Vol 23, p.876
  12. Mei, C.L., He, S.Y. & Fang, K.T., 2004. A Note on The Mixed Geographically Weighted Regression Model. Journal of Regional Science, Vol 44, pp.143-157
  13. Myers, R.H. & Myers, R.H., 1990. Classical and Modern Regression with Applications. 2nd edition. Belmont, CA: Duxbury Press
  14. Nunes, A. F., Monteiro, P. L., & Nunes, A. S. 2020. Factor Structure of The Convergence Insufficiency Symptom Survey Questionnaire. Plos one, Vol. 15
  15. Nursiyono, J.A. & Apriyani, M., 2023. Pengaruh jumlah pelayanan kesehatan dan jumlah balita kurus terhadap kejadian stunting pada balita di Jawa Timur 2020. Spirakel, 15(1), pp.1-8
  16. Pratnyaningrum, N., Yasin, H. & Hoyyi, A., 2015. Pemodelan Persentase Balita Gizi Buruk di Jawa Tengah dengan Pendekatan Geographically Weighted Regression Principal Components Analysis (GWRPCA). Jurnal Gaussian, Vol. 4, pp.171-180
  17. Putri, F. K., & Imro’ah, N. 2021. Pemodelan persentase angka kematian bayi di Kalimantan Barat dengan metode geographically weighted regression principal component analysis (GWRPCA). Buletin Ilmiah Math. Stat. dan Terapan (Bimaster), Vol. 10, pp. 117–124
  18. Sari, N., Yasin, H., & Prahutama, A. 2016. Geographically Weighted Regression Principal Component Analysis (GWRPCA) pada pemodelan pendapatan asli daerah di Jawa Tengah. Jurnal Gaussian, Vol.5, pp. 717–726. Available at: http://ejournal-s1.undip.ac.id/index.php/gaussian
  19. Simamora, B., 2005. Analisis Multivariat Pemasaran. Jakarta: Gramedia Pustaka Utama
  20. Wang, Q., Jiang, D., Gao, Y., Zhang, Z. & Chang, Q., 2022. Examining the Driving Factors of SOM Using a Multi-Scale GWR Model Augmented by Geo-Detector and GWRPCA Analysis. Agronomy, Vol.12, p.1697
  21. Yildirim, H., Isik, K., & Cengizhan, S. Ö. 2021. Psychometric evaluation of the healthy aging instrument in older adults. Educational Gerontology, Vol.47, 235-246

Last update:

No citation recorded.

Last update:

No citation recorded.