skip to main content

PENERAPAN ALGORITMA k-PROTOTYPE UNTUK PENGELOMPOKAN DESA DI KABUPATEN BEKASI BERDASARKAN INFRASTRUKTUR DIGITAL

*Ariani Fitri Purba  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Mustafid Mustafid  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Puspita Kartikasari  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2024 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Grouping villages in Bekasi Regency is necessary as a planning and evaluation material for government program targets, especially in digital transformation efforts. The goal is to find out which villages are prioritized based on the characteristics of digital infrastructure. Thus, grouping villages in Bekasi Regency based on digital infrastructure needs to be done to support the success of digital transformation efforts. The analysis that can be used to group a village is cluster analysis. The clustering method used in this research is the k-Prototype algorithm using the value of  = 1, 2, 3, ..., and 10. The k-Prototype algorithm is a clustering method that can handle mixed type data, namely numeric and categorical types and large data. The k-Prototype algorithm has the advantage that the algorithm is less complex and better than hierarchy-based algorithms. Based on the results of analysis, the optimal number of groups formed was four groups with an Average Silhouette Width value of 0,505. Group 3, which consists of 9 villages, is the best group based on digital infrastructure characteristics, while group 1, which consists of 41 villages, has the lowest average cellular phone communication service operator and is dominated by villages that do not have internet access and internet facilities at the village office. In addition, group 1 has the most villages with weak cellular phone signals compared to the other groups.
Fulltext View|Download
Keywords: Digital Infrastructure; Mixed Type Data; Cluster Analysis; k-Prototype Algorithm; Average Silhouette Width

Article Metrics:

  1. Badan Pusat Statistik Kabupaten Bekasi. 2019. Hasil Pendataan Potensi Desa (PODES) 2019 Kabupaten Bekasi. Bekasi: Badan Pusat Statistika Kabupaten Bekasi
  2. Everitt, B., Landau, S., Leese, M., dan Stahl, D. 2011. Cluster Analysis (5th Ed). London: WILEY
  3. Fox, J., Monette, G. 1992. Generalized Collinearity Diagnotics. Journal of the American Statistical Association Vol. 87 No. 417, Hal: 178-183
  4. Hair, J., Black, W., Babin, B., dan Anderson, R. 2010. Multivariate Data Analysis (7th Ed). New York: Pearson Prentice Hall
  5. Huang, Z. 1997. Clustering Large Data Set with Mixed Numeric and Categorical Values. In the 1st Pacific-Asia Conference on Knowledge Discovery and Data Mining, 21-34
  6. Huang, Z. 1998. Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Values. Data Mining and Knowledge Discovery2. Vol.2 No. 3, Hal:283—304
  7. Johnson, R., dan Wichern, D. 2007. Applied Multivariat Statistics (5th Ed). New Jersey: Prantice Hall
  8. Kaufman, L., dan Rouseeuw, P. 2005. Finding Groups in Data: An Introduction to Cluster Analysis. New Jersey: John Wiley & Sons
  9. Kementrian Keuangan. 2022. Infrastruktur Digital, Seberapa Penting?. Tersedia: https://kpbu.kemenkeu.go.id/read/1152-1408/umum/kajian-opini-publik/infrastruktur-digital-seberapa-penting (diakses pada tanggal 25 November 2022)
  10. Wahyuddin, S., Rachmat, Z., Amriadi, Kusumawarhani Z., Abbas, S. 2022. Transformasi Digital Menuju Kelompok Informasi Masyarakat (KIM) di Desa Palangiseng. Prosiding PEPADU 2022. e-ISSN: 2715-5811 Vol. 4, Hal: 141-144
  11. Pham, dan Maria, M. 2011. Random Search with k-Prototypes Algorithm for Clustering Mixed Datasets. Proceedings of The Royal Society a Mathematical Physical and Engineering Sciences. https://doi: 10.1098/rspa.2010.0594

Last update:

No citation recorded.

Last update:

No citation recorded.