skip to main content

ANALISIS KLASIFIKASI MENGGUNAKAN REGRESI LOGISTIK BINER DAN ALGORITMA NAÏVE BAYES CLASSIFIER PADA PENYAKIT HIPERTENSI

*Riza Sahila  -  Departemen Statistika Fakultas Sains dan Matematika Universitas Diponegoro Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275., Indonesia
Tatik Widiharih  -  Departemen Statistika Fakultas Sains dan Matematika Universitas Diponegoro Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275., Indonesia
Iut Tri Utami  -  Departemen Statistika Fakultas Sains dan Matematika Universitas Diponegoro Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275., Indonesia
Open Access Copyright 2024 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Hypertension is a primary cause of cardiovascular disease. Approximately 60% of people with hypertension are in developing countries, including Indonesia. In this analytical study, classification will be carried out to prove the status of hypertensive patients or not hypertensive. The classification method used is Binary Logistic Regression and Naïve Bayes Classifier. Binary Logistic Regression is Logistic Regression with the response variable being binary. Naïve Bayes Classifier namely predicting future opportunities using previous data. The factors used in this study were gender, age, height, and weight. The greatest accuracy of classification results is in the proportion of 90%:10%. The accuracy of the classification produced by Binary Logistic Regression method resulted in a sensitivity of 93.33%. The classification accuracy obtained by the Naïve Bayes Classifier with a sensitivity of 63.64%. This shows that the Binary Logistic Regression method has a better sensitivity value.

Keywords:  Hypertension, Classification, Binary Logistic Regression, Naïve Bayes Classifier, Sensitivity. 

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
CTA
Subject
Type Research Instrument
  Download (435KB)    Indexing metadata
Keywords: Keywords: Hypertension; Classification; Binary Logistic Regression; Naïve Bayes Classifier; Sensitivity.

Article Metrics:

  1. Agresti, A. (2007). An Introduction to Categorical Data Analysis Second Edition. New Jersey: John Wiley and Sons
  2. Han, J., dan Kamber, M. (2006). Data Mining: Concepts and Techniquess,2^thAnnual Internasional ACM SIGIR Conference on Research and Development in Information Retrieval, 97-104
  3. Hosmer, D. W, dan Lemeshow S. (2000). Applied Logistic Regression. United States of American: Sons Inc
  4. Jain, R. 2011. Pengobatan Alternatif untuk Mengatasi Tekanan Darah. Jakarta: PT. Gramedia Pustaka Utama
  5. Kowalski, R, E. 2007. Terapi Hipertensi. Bandung: Qanita
  6. Manjoer, A. 2001. Kapita Selekta Kedokteran Edisi Ketiga. Jakarta: Media Aesculapius Fakultas Kedokteran Universitas Indonesia
  7. Prasetyo, E. 2012. Data Mining Konsep Dan Aplikasi Menggunakan Matlab. Yogyakarta: Andi
  8. Prasetyo, E. 2014. Data Miing Mengolah Data Menjadi Informasi Menggunakan Matlab. Yogyakarta: Andi Offset
  9. UPT Puskesmas Lamper Tengah. 2022. Profil Kesehatan UPT Puskesmas Lamper Tengah Dinas Kesehatan Kota Semarang Tahun 2022 (Data Tahun 2022). Semarang: UPT Puskesmas Lamper Tengah
  10. Virmani, D., Taneja, S. dan Malhotra, G., 2015. Normalization based K means Clustering Algorithm. International Journal of Advanced Engineering Research and Science (IJAERS), 2(2), pp. 36-40
  11. Widjaja. 2009. Hubungan Keluarga Dengan Tingkat Kepatuhan Diet Rendah Garam. Jakarta
  12. Widodo, P.P., Handayanto, R. T., dan Herlawati, H. 2013. Penerapan Data Mining Dengan Matlab. Bandung: Rekayasa Sains
  13. World Health Organization (WHO). 2018. Global Health Estimates 2016: Deaths by Cause, Age, Sex, by country and by Region, 2000-2016. Geneva: World Health Organization

Last update:

No citation recorded.

Last update:

No citation recorded.