slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor
MENGATASI OVERDISPERSI DENGAN REGRESI BINOMIAL NEGATIF PADA ANGKA KEMATIAN IBU DI KOTA BANDUNG | Winata | Jurnal Gaussian skip to main content

MENGATASI OVERDISPERSI DENGAN REGRESI BINOMIAL NEGATIF PADA ANGKA KEMATIAN IBU DI KOTA BANDUNG

*Hilma Mutiara Winata  -  UIN Sunan Gunung Djati Bandung, JL.A.H. Nasution no.105, Cibiru, Bandung, Indonesia 40614, Indonesia
Open Access Copyright 2022 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

The maternal mortality rate in the city of Bandung is still a concern for the government, even though various health programs have been held to handle it. The very slight reduction in maternal mortality is a reason for further research to look for factors that have a significant effect. The data on maternal mortality cases usually contain a lot of zeros and follow the Poisson distribution so that they are solved with a Poisson regression model, however the model formed cannot be used because the model shows overdispersion with a deviation value of more than one. Therefore, to overcome this problem, negative binomial regression is used as a solution. This negative binomial regression model produces three predictor variables out of seven variables that have a significant effect on maternal mortality in the city of Bandung including pregnant women receiving FE1 (30 tablets), deliveries assisted by health personnel and postpartum service coverage. Then tested the goodness of the model from the negative binomial regression model by looking at the AIC value. The true negative binomial regression model is better because the AIC value is 109.4 which is smaller than 121.65 which is the AIC value of the Poisson regression model.

Fulltext View|Download
Keywords: Poisson regression; Negative Binomial Regression; Overdispersion.

Article Metrics:

  1. Agresti, A., 2018. An Introduction to Categorical Data Analysis. New York: John Wiley & Sons
  2. Cameron, A. C. & Trivedi, P. K., 2013. Regression Analysis of Count Data. New York: Cambridge University Press
  3. Hilbe, J. M., 2011. Negative Binomial Regression Second Edition. New York: Cambridge University Press
  4. MC Kota Bandung, 2021. [Online]
  5. Available at: https://infopublik.id/kategori/nusantara/504080/angka-kematian-ibu-dan-bayi-di-kota-bandung-masih-tinggi
  6. Tim Open Data Jabar, 2022. [Online]
  7. Available at: https://opendata.jabarprov.go.id/id/dataset?topic=2
  8. Tim Penulis Kemenkes RI, 2020. Indikator Program Kesehatan Masyarakat Dalam RPJMN dan Renstra Kementerian Kesehatan 2020-2024. Jakarta: Kementerian Kesehatan RI
  9. Ulfa, Y. A., Sholeh, A. M. & Sartono , B., 2021. Penanganan Overdispersi pada Model Regresi Poisson dengan Binomial Negatif untuk Jumlah Kasus Baru Kusta di Jawa. Indonesian Journal of Statistics and Its Applications, pp. Vol. 5, No. 1, 1-13
  10. Utami, T. W., 2013. Analisis Regresi Binomial Negatif Untuk Mengatasi Overdispersion Regresi Poisson Pada Kasus Demam Berdarah Dengue. Jurnal Statistika Universtas Muhammadiyah Semarang, pp. Vol. 1, No. 2

Last update:

No citation recorded.

Last update:

No citation recorded.