skip to main content

PEMODELAN KURS RUPIAH TERHADAP DOLAR AMERIKA SERIKAT MENGGUNAKAN REGRESI NONPARAMETRIK CAMPURAN KERNEL DAN SPLINE

*Khansa Amalia Fitroh  -  , Indonesia
Rukun Santoso  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Suparti Suparti  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2022 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Exchange currency is one way for a country to be able to transact with the outside world. Fluctuating movement of the rupiah exchange currency was caused by many influencing factors, such as exports, imports, the money supply (JUB), inflation, and JCI. To find out the relationship, nonparametric regression modeling was carried out with a mixed kernel estimator and a multivariable truncated linear spline. Import variables were approached with kernel regression because the data patterns were random and spread out while the export variables, JUB, inflation, and the Jakarta Composite Index (JCI) were approached with spline regression because the data patterns changed at certain sub-intervals. The purpose of this study is to model exchange currency of the rupiah against the US dollar with a mixed kernel and spline truncated estimator. The parameter estimation method used is Ordinary Least Square (OLS). The multivariable linear truncated spline and kernel mix estimator depends on knot points and bandwidth. The best model is seen from the knot point and optimal bandwidth obtained by selecting the minimum Generalized Cross Validation (GCV). The best model is applied to data on the exchange currency of the rupiah against the US dollar with two optimal knot points resulting in value of 0.7627. The model performance evaluation was calculated using MAPE and the resulting MAPE value was 0.598%.
Fulltext View|Download
Keywords: Exchange currency; Kernel; Spline; Mixed Nonparametric Regression

Article Metrics:

  1. Budiantara, I., & Mulianah. (2007). Pemilihan Banwidth Optimal Dalam Regresi Semiparametrik Kernel dan Aplikasinya. Jurnal Sains Dan Teknologi SIGMA, 2(2), 159–166
  2. Budiantara, I. N., Ratnasari, V., Ratna, M., & Zain, I. (2015). The Combination of Spline and Kernel Estimator for Nonparametric Regression and its Properties. Applied Mathematical Sciences, 9(122), 6083–6094. https://doi.org/10.12988/ams.2015.58517
  3. Cox, D. D., & Sullivan, F. (1996). Penalized Likelihood-type Estimators for Generalized Nonparametric Regression. Journal of Multivariate Analysis, 56(2), 185–206. https://doi.org/10.1006/jmva.1996.0010
  4. Eubank, R. (1999). Nonparametric Regression and spline smoothing. Marcel Dekker, Inc
  5. Faizin, M. (2020). Analisis Hubungan Kurs terhadap Inflasi. Akuntabel, 17(2), 314–319
  6. Firdaus, I. (2017). Analisis Pengaruh Inflasi, Suku Bunga, Nilai Tukar Rupiah dan Laba Akuntansi Terhadap Jakarta Islamic Index (JII). (Vol. 12). Universitas Muhammadiyah Purwokerto
  7. Härdle, W. (1991). Kernel Density Estimation (pp. 43–84). Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4432-5_2
  8. Hardle, W., & Linton, O. (1994). Chapter 38 Applied Nonparametric Methods. Handbook of Econometrics, 4, 2295–2339. https://doi.org/10.1016/S1573-4412(05)80007-8
  9. Hesikumalasari, Budiantara, I Nyoman, & Ratnasari, V. (2016). Pemodelan Regresi Semiparametrik Menggunakan Estimator Campuran Spline Truncated dan Kernel. In Institut Teknologi Sepuluh Nopember. Institut Teknologi Sepuluh November
  10. Purnomo, A. (2016). Estimator Campuran Kernel dan Spline Truncated Linier Multivariabel Dalam Regresi Nonparametrik (Studi Kasus: Model Rata-Rata Lama Sekolah di Provinsi Jawa Tengah) [Institut Teknologi Sepuluh November]. https://repository.its.ac.id/1466/
  11. Richards, N. D., Simpson, J., & Evans, J. (2009). The Interaction between Exchange Rates and Stock Prices: An Australian Context. International Journal of Economics and Finance, 1(1). https://doi.org/10.5539/ijef.v1n1p3
  12. Rory, Budiantara, I. N., & Wibowo, W. (2016). Regresi Campuran Nonparametrik Spline Linier Truncated dan Fungsi Kernel untuk Pemodelan Data Kemiskinan di Provinsi Papua. Institut Teknologi Sepuluh Nopember, 1–6
  13. Setyorini, & Supriyadi. (2001). Hubungan Dinamis antara Nilai Tukar Rupiah dan Harga Saham di Bursa Efek Jakarta Pasca Penerapan Sistem Devisa Bebas Mengambang. Simposium Akuntansi Nasional., Ke III, Hal 771-793. https://ideas.repec.org/a/uii/jaaife/v5y2001i1p59-79.html
  14. Ulfa, S. A. (2012). Pengaruh Jumlah Uang Beredar (JUB), Suku Bunga Sertifikat Bank Indonesia (SBI), Impor, Ekspor Terhadap Kurs Rupiah/ Dollar Amerika Serikat Periode Januari 2006 Sampai Maret 2010. Edaj, 1(1). http://journal.unnes.ac.id/sju/index.php/edaj
  15. Wahba, G. (1990). Spline Models for Observational Data. SIAM Pensylvania

Last update:

No citation recorded.

Last update:

No citation recorded.