skip to main content

ANALISIS SENTIMEN PENERAPAN PPKM PADA TWITTER MENGGUNAKAN NAÏVE BAYES CLASSIFIER DENGAN SELEKSI FITUR CHI-SQUARE

*Pualam Wahyu Ratiasasadara  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Sudarno Sudarno  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Tarno Tarno  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2022 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Dissemination of information related to the implementation of PPKM takes place very quickly, especially on social media networks. Positive and negative news certainly has an impact on public opinion or sentiment on the implementation of PPKM. Sentiment analysis is needed to determine behavior or opinions in the form of reviews, ratings, or tendencies of the author towards a particular topic. In this study, the data used is public opinion on Twitter social media with the keyword "PPKM" from November 2, 2021 to November 8, 2021 and obtained data as many as 12,616 tweets which then deleted duplicate data to become 6,465 data. Data classification was performed using Naïve Bayes with Chi-Square feature selection and the data were classified into positive and negative classes. The results of the classification performance using Nave Bayes with Chi-Square feature selection obtained an accuracy of 83% which means that the Nave Bayes classification model with Chi-Square feature selection is quite effective in classifying public opinion on the implementation of PPKM.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
Untitled
Subject
Type Research Instrument
  Download (19KB)    Indexing metadata
 Research Instrument
Untitled
Subject
Type Research Instrument
  Download (19KB)    Indexing metadata
Keywords: PPKM; Twitter; Sentiment Analysis; Naïve Bayes Classifier; Featured Selection Chi- Square.

Article Metrics:

  1. Aditya, B. R. 2015. Penggunaan Web Crawler Untuk Menghimpun Tweets dengan Metode Pre-Processing Text Mining. Jurnal Infotel Vol 7, No. 2. DOI: https://doi.org/10.20895/infotel.v7i2.35
  2. Agastya, I, M, A., 2018. Pengaruh Stemmer Bahasa Indonesia Terhadap Performa Analisis Sentimen Terjemahan Ulasan Film. Jurnal TEKNOKOMPAK Vol 12, No. 1, Hal: 18-23. DOI: https://doi.org/10.33365/jtk.v12i1.70
  3. Azis, H., Tangguh Admojo, F., & Susanti, E. 2020. Analisis Perbandingan Performa Metode Klasifikasi pada Dataset Multiclass Citra Busur Panah Performance Comparison Analysis of Classification Methods on the Multiclass Dataset of Bows Jurnal Techno, Vol 19, No. 3. DOI: https://doi.org/10.33633/tc.v19i3.3646
  4. Basari, A. S. H., Hussin, B., Ananta, I. G. P., & Zeniarja, J. 2013. Opinion mining of movie review using hybrid method of support vector machine and particle swarm optimization. Procedia Engineering. Jurnal Procedia Engineering Vol 53, Hal: 453-462. DOI: https://doi.org/10.1016/j.proeng.2013.02.059
  5. Deolika, A., & Taufiq Luthfi, E. 2019. ANALISIS PEMBOBOTAN KATA PADA KLASIFIKASI TEXT MINING. Jurnal Teknologi Informasi Vol 3, No. 2
  6. Fanissa, S., Fauzi, M, A., & Adinugroho, S. 2018. Analisis Sentimen Pariwisata di Kota Malang Menggunakan Metode Naive Bayes dan Seleksi Fitur Query Expansion Ranking. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 2. No. 8, Hal: 2766-2770. DOI: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/1962
  7. Feldman, R., & Sanger, J. 2007. The text mining handbook : advanced approaches in analyzing unstructured data. Cambridge University Press, Volume 34 Number 1
  8. Firdaus, A., & Firdaus, W. I. 2021. Text Mining Dan Pola Algoritma Dalam Penyelesaian Masalah Informasi : (Sebuah Ulasan). Jurnal JUPITER Vol 13, No. 1, Hal: 66-78
  9. Firmansyah, Z., & Puspitasari, N. F. 2021. Analisis Sentimen Masyarakat Terhadap Vaksinasi Covid-19 Berdasarkan Opini Pada twitter Menggunakan Lagoritma Naïve Bayes. Jurnal Teknik Informatika Vol 14, No. 2. DOI: https://doi.org/10.15408/jti.v14i2.24024
  10. Han, J., Kamber, M., & Pei, J. 2011. Data Mining: Concept and Techniques (3rd ed.). Morgan Kaufmann Publishers
  11. Khosmah, S., & Aribowo, A, S. 2020. Model Text-Preprocessing Komentar Youtube Dalam Bahasa Indonesia. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 4, No. 4, Hal: 648-654. DOI: https://doi.org/10.29207/resti.v4i4.2035
  12. Ling, J., Kencana, I, P, E, N., & Oka, T, B. 2014. Analisis Sentimen Menggunakan Metode Naïve Bayes Classifier Dengan Seleksi Fitur Chi-Square. E-Jurnal Matematika Vol 3, No. 3, Hal: 92-99
  13. Manning, C. D., Raghavan, P., & Schutze, H. 2008. An Introduction to Information Retrieval. Cambridge University Press, Page 253-270
  14. Mujilahwati, S. 2016. Pre-Processing Text Mining Pada Data Twitter. Jurnal Teknologi Informasi dan Komunikasi
  15. Nurjannah, M., & Fitri Astuti, I. 2013. Penerapan Algoritma Term Frequency-Inverse Document Frequency (TF-IDF) Untuk Text Mining. Jurnal Informatika Vol 8, No. 3. DOI: http://dx.doi.org/10.30872/jim.v8i3.113
  16. Rodiyansyah, S. F., & Winarko, E. 2013. Klasifikasi Posting Twitter Kemacetan Lalu Lintas Kota Bandung Menggunakan Naive Bayesian Classification. Jurnal IJCCS Vol 7, No. 1. DOI: https://doi.org/10.22146/ijccs.2144
  17. Suharno, F. A., & Listiyoko, L. 2018. Aplikasi Berbasis Web dengan Metode Crawling sebagai Cara Pengumpulan Data untuk Mengambil Keputusan. Jurnal Teknologi Informasi. DOI: https://e-jurnal.lppmunsera.org/index.php/snartisi/article/view/813
  18. Twitter, A. R. (2019). Report Twitter. https://help.twitter.com/id. (diakses pada 10 Januari 2022)
  19. Twitter, S. (2019). Support Twitter. https://help.twitter.com/id. (diakses pada 10 Januari 2022)
  20. Wardani, N. W., & Nugraha, P. G. S. C. 2020. Stemming Teks Bahasa Bali dengan Algoritma Enhanced Confix Stripping. International Journal of Natural Science and Engineering Vol 4, No. 3. DOI: https://doi.org/10.23887/ijnse.v4i3.30309
  21. Zuhri, F. N., & Alamsyah, A. 2017. Analisis Sentimen Masyarakat Terhadap Brand Smartfren Menggunakan Naïve Bayes Classifier di Forum Kaskus. E-Proceeding of Management Vol 4, No. 1, Page: 242

Last update:

No citation recorded.

Last update:

No citation recorded.